Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов.

К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником.

При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки.

При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения.

При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Вам это будет интересно  Тестер электрический

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода.

Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно.

База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1.

На нем представлено условное графическое обозначение триака на электрических принципиальных схемах.

В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека.

Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов.

Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток.

При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковКонструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно.

Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные.

Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором.

У симисторов существуют следующие характеристики:

  1. Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковВеличина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt.

Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа.

Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

Вам это будет интересно  Измерительный прибор Ц-20

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Диагностика в схемах

В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку.

Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции.

Читайте также:  Как шпаклевать новичку стены под обои своими руками: рекомендации, как правильно подготовить поверхность и самостоятельно наносить состав

Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:

  1. Включить прибор в режим измерения величины сопротивления.
  2. Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
  3. Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.

Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает.

Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1).

Для этого необходимо использовать лампу накаливания и аккумулятор.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания

В этой схеме симистор будет проверен под нагрузкой.

При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины.

Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.

Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.

Источник: https://rusenergetics.ru/ustroistvo/princip-dejstviya-simistora

Симисторы: принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью.

Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор.

Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковРис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО.

Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковРис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковСимистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковRC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока.

Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась.

Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.
  • Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.
  • Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).
  • Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковСхема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковСхема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Читайте также:  Пирометры для измерения температуры бесконтактным методом

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковПростой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковСхема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Источник: https://www.asutpp.ru/simistory.html

Симистор

Радиоэлектроника для начинающих

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – “затвор”). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно.

Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях.

Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковСимисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение.

На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку.

В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше.

После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.
  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.
  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.
  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.
  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Основные параметры симистора

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.
  • В импульсном режиме напряжение точно такое же.
  • Максимальный ток в открытом состоянии – 5А.
  • Максимальный ток в импульсном режиме – 10А.
  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.
  • Наименьший импульсный ток – 160 мА.
  • Открывающее напряжение при токе 300 мА – 2,5 V.
  • Открывающее напряжение при токе 160 мА – 5 V.
  • Время включения – 10 мкс.
  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковОптосимистор MOC3023

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробниковУстройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как “не подключается”.

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Как проверить диод мультиметром?

  • Как определить мощность трансформатора?

Источник: https://go-radio.ru/simistor.html

Как выполнить проверку симистора и тиристора мультиметром

Используя домашний тестер (мультиметр), легко выполнить проверку различных радиоэлементов. Для домашних мастеров, которые работают с электронными приборами это довольно полезная вещь.

К примеру, правильно выполненная проверка симистора мультиметром позволит избежать поиска новых деталей при ремонте электрооборудования.

 Чтобы понять данный процесс досконально, необходимо выяснить, что представляют собой тиристоры.

Что такое тиристоры

Это полупроводниковые приборы, которые выполнены с учетом классических монокристальных технологий. На кристаллах имеются p-n переходы в количестве 3-х и более штук, с диаметрально противоположным устойчивым состоянием. Основным применением данной детали являются электронные ключи. Использование этих радиоэлементов может быть хорошей альтернативой механическому реле.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Процесс включения осуществляется регулируемым и плавным образом, без дребезжания контактов. Нагрузки по основным направлениям при открытии p-n перехода подаются управляемым образом, то есть присутствует возможность соблюдения контроля скорости при нарастании рабочего тока.

При этом, стоит отметить, что тиристор в сравнении с реле, может быть удачно интегрирован в электросхему с любым уровнем сложности. При отсутствии искрения каждого контакта, их можно использовать для систем, в которых не допускаются коммутационные помехи.  Детали довольно компактны, выпускаются в виде разных форм-факторов, также и для установки на охлаждающие радиаторы.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Управление прибором осуществляется посредством внешнего воздействия на основе:

  • электрического тока, что поступает на управляющие электроды;
  • луча света, в случае использования фототиристора.

Примечательно, что в сравнении с тем же реле, нет необходимости в постоянной подаче управляющего сигнала. Рабочие p-n переходы будут открыты и после того, как завершена подача тока. Тиристоры закроются, при опускании протекающего сквозь него рабочего тока ниже уровня порогов удержания.

Читайте также:  Маркировка цепей для бензопил

Еще одно свойство тиристоров, которое является основной характеристикой — это использование их в качестве одностороннего проводника. Так, протекание паразитных токов в обратное направление осуществляться не будет. Благодаря чему значительно упрощаются схемы по управлению радиоэлементами.

Тиристор может выпускаться в различной модификакции, исходя из того, какой способ управления и дополнительные возможности необходимы. Он может быть:

  • диодным с прямой проводимостью;
  • диодным с обратной проводимостью;
  • диодным симметричным;
  • триодным с прямой проводимостью;
  • триодным с обратной проводимостью;
  • триодным ассиметричным.

Бывают также разновидности триодных тиристоров с двунаправленной проводимостью.

Что такое симистор, и в чем его отличие от тиристора

Симисторы (или «триаки») являются особыми разновидностями триодных симметричных тиристоров. Главным преимуществом любого симистора можно считать наличие способности проводки тока на рабочем p-n переходе в двух направлениях. Благодаря этому осуществляется использование радиоэлементов сфере систем, имеющих переменное напряжение.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Их рабочие принципы и конструктивные особенности сходны с остальными тиристорами. При подачах управляющих токов p-n переходы отпираются, и остаются открытым до момента снижения величин рабочих токов. Популярным применением симистора является использование его для регуляторов напряжений в осветительных системах и бытовых электроинструментах.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Принцип работы этого радиокомпонента схожий с принципом действия транзистора, однако деталь не является взаимозаменяемой. Разобравшись в том, что такое симистор и тиристор, необходимо также рассмотреть вопрос, о проверке этих деталей на показатели работоспособности.

Видео «Как проверить рабочее состояние тиристора и симистора»

Как прозвонить тиристор мультиметром

Стоит отметить, что существует несколько способов проверки исправности симисторов и тиристоров. Для этого необязательно использовать тестер, можно обойтись лампочкой от фонарика и пальчиковой батарейкой. Чтобы это сделать, нужно выполнить последовательное подключение источника питания, лампочки и рабочих выводов на тиристоре.

Следует помнить о том, что у обычного тиристора проводимость тока осуществляется только в одно направление. В связи с этим необходимо придерживаться полярности.

Когда будет подаваться управляющий ток (хватает аккумулятора АА), то будет происходить загорание лампочки, что означает о исправности цепи. После этого выполняем отсоединение батарейки, без отключения источника рабочего тока. При исправности p-n перехода и настройке его на определенных величинах, свечение лампочки будет продолжено.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

В случае, если подходящая лампа или батарейка отсутствует, то придется использовать тестер. А для этого важно знать, как проверить тиристор мультиметром.

  1. Положение переключателя устанавливаем на «Прозвонку». На щупы каждого провода поступит необходимый уровень напряжения, чтобы проверить тиристор. Рабочим током не открываются p-n переходы, поэтому если значение сопротивления на выводе будет высокое, то это значит, что ток не проходит. Дисплей на мультиметре показывает «1». Так мы можем убедиться, в исправности рабочего p-n перехода;
  2. Выполняем проверку открытия перехода. С этой целью осуществляем соединение управляющего вывода с анодом. Тестером происходит обеспечение достаточным уровнем тока, чтобы выполнить открытие перехода, а величина сопротивления резко спадает. Дисплей отображает значения, которые отличаются от единицы. Это говорит об «открытии» тиристора. Благодаря этому мы выполнили проверку работоспособности управляющих элементов.
  3. Проводим размыкание управляющего контакта. В таком случае показатели сопротивления должны равняться бесконечности, об этом свидетельствует значение «1» на табло.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Из-за чего тиристор не имеет открытое состояние

Особенность состоит в том, что мультиметры не вырабатывают величины тока, достаточного для функционирования тиристоров по «токам удержаний». Данные элементы проверены быть не смогут.

Но на остальных пунктах проверки можно определить исправен ли полупроводниковый прибор. При изменении мест полярности — проверку осуществить невозможно.

Благодаря этому можно убедиться в том, что на приборе отсутствует обратный пробой.

Используя мультиметр, можно также выполнить проверку чувствительности прибора. Для этого нужно сделать перевод переключателя на тестере в режим омметра. Съем измерений осуществляется по заранее описанным методикам. Главное, каждый раз менять показатели чувствительности на приборе. Начинать следует с пределов измерений вольтметра «х1».

Чувствительный тиристор, если отключить управляющий ток, продолжает сохранять открытые состояния, что будет фиксироваться тестером. Далее увеличивается предел измерений до значения «х10». После изменения величина тока на щупе прибора уменьшится.

В случае, если управляющий ток был отключен, но переход не был закрыт, то проводим увеличение предела измерений до того момента, пока тиристор сработает по удерживающему току.

Примечательно, что при меньшем токе удержания, чувствительность тиристора больше.

Проверяя детали, которые идут в одной партии (или имеют одинаковые характеристики), стоит отдавать предпочтение более чувствительным элементам.

Такие тиристоры обладают более гибкими возможностями управления, что влияет на расширение их области применения. При освоении принципа проверки тиристоров, можно также понять, как проверить симистор мультиметром.

В процессе прозвонки следует учитывать, что полупроводниковые ключи обладают симметричной двусторонней проводимостью.

Как проверить симистор мультиметром

Симистор обладает аналогичной схемой проверки подключения. Можно воспользоваться лампой и батарейками или мультиметром, у которого широкий диапазон измерения в режиме омметра. Пройдя тесты с одной полярностью, выполняем переключение щупов прибора к обратной полярности.

У исправного симистора должны отображаться довольно однотипные результаты  тестирования. Следует выполнить проверку открытия и удержания p-n переходов по обоим направлениям шкалы предела измерений мультиметра.

Если радиодетали, которые должны быть проверены, находятся на монтажных платах, то нет потребности  в их выпаивании для теста. Для этого нужно только выполнить освобождение управляющего вывода. Главное, не забывать о предварительном обестачивании проверяемого электроприбора.

Чтобы более детально разобраться в особенностях проверки симистора мультиметром, рекомендуем просмотреть видео.

Видео «Как проверить исправность тиристора»

Источник: https://pro-instrymenti.ru/elektronika/proverka-simistora-multimetrom/

Способы, как проверить симистор

Нередко радиолюбителям приходится собирать различные приспособления из деталей, которые были добыты путем разборки старых электрических или радиоприборов.

Понятно, что после долгого лежания в ящиках сам владелец этого мини-склада уже и не помнит, в каком состоянии находятся детали. То есть, они исправны или нет. Поэтому используемую деталь обычно проверяют.

А так как тема нашей статьи – как проверить симистор, то будем разбираться в этом вопросе досконально.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Что такое симистор

В первую очередь необходимо понять, что собой представляет эта деталь. Это разновидность тиристоров, которая отличается от них тем, что может пропускать электрический ток в любую сторону.

То есть, при смене полярности подключения этот прибор будет работать обязательно. В сравнении с тиристорами такого произойти не может, потому что этот прибор работает только в одну сторону.

Чисто конструктивно симистор – это два тиристора, соединенных между собой разными полюсами.

Тестирование

У каждого радиолюбителя есть свои способы проверить симистор. Для этого можно использовать специальные приборы или подручные материалы. Главное – знать, как проверить правильно прибор на основе принципа его работы.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Способ №1

Самый простой способ – это протестировать симистор омметром. Для этого необходимо катод детали соединить с отрицательным контактом омметра, анод с положительным контактом.

А затем закоротить анод с управляющим электродом. На самом омметре необходимо выставить единицу (х1).

Если при этом стрелка покажет сопротивление прибора в пределах 15-50 Ом, можно считать, что симистор цел и пригоден для установки в любой радиоприбор.

Но тут есть один важный момент. Если в таком положении с анода убрать все контакты, и показания сопротивления при этом не изменятся, то это подтверждает целостность детали. Если стрелка начнет отклоняться к нулю, то выбросите симистор в мусор.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Способ №2

Конечно, можно придумать большое количество различных приборов, с помощью которых провести проверку симистра будет несложно. Но для этого придется прикладывать усилия и тратить свое время на сборку, хотя для многих это будет в удовольствие. Для примера приводим одну из схем такого тестового устройства, вот она на рисунке снизу.

Симистор: принцип работы и виды, основные характеристики, способы проверки мультиметром и схемы пробников

Схема подключения данного прибора к симистру точно такая же, как и в случае с тестированием при помощи омметра. Но в этом устройстве установлен светодиод (HL1). Так вот при подаче напряжения на симистор через кнопку (ключ) световой источник должен загореться. А это говорит об исправности детали.

Обратите внимание на резисторы. Их сопротивления рассчитывается под номинальное напряжение. Практика показала, что сопротивление в диапазоне 9-12 Ом достаточная величина.

Заключение по теме

Как видите, больших проблем, чтобы протестировать симистор, нет. Конечно, оптимальный вариант – это использование омметра, который есть в арсенале у каждого радиолюбителя.

Но если появляется желание поэкспериментировать, то можно собрать самостоятельно тестовое устройство.

Предложенная схема не единственная, в принципе, можно попробовать собрать и свой вариант, взяв за основу данное предложение.

Что касается исправности детали, то рекомендуется проверять ее с двух сторон, ведь симистор работает как в одну, так и в другую сторону. То есть, сначала подключаются контакты по вышеизложенной схеме. Затем полярность подключения можно изменить на противоположную. Исправная деталь будет работать и том, и в другом направлении.

Источник: https://onlineelektrik.ru/elaboratoriya/eizmereniya/sposoby-kak-proverit-simistor.html

Ссылка на основную публикацию
Adblock
detector