Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Вот и отпуску конец… Сегодня рассмотрим тему взаимоотношения силового электрического кабеля и мегаомметра. Здесь будет присутствовать два вопроса: прозвонка и проверка сопротивления изоляции. В зависимости от вида мегаомметра (стрелочный или цифровой) будет отличаться и порядок действий.

Для чего проверяют сопротивление изоляции кабеля?

Для чего вообще производят эти измерения? Ток у нас течет по проводнику, которым является медная или алюминиевая жила (или много жил). И между токопроводящей жилой и окружающей средой находится изоляция – пластмассовая, резиновая, ПВХ, бумажная, масляная.

Изоляция защищает жилу от соприкосновения с другой жилой, с окружающей средой, с человеком. Характеристикой качества изоляции, кроме прочих, является сопротивление изоляции. Эта характеристика измеряется в омах и их производных (кило, мега, гига).

Сопротивление – это величина обратная проводимости, то есть она показывает способность не пропускать электрический ток. Чем слабее изоляция, тем больше вероятность, что ток найдет путь и распространится из кабеля через токопроводящие поверхности и материалы. То есть произойдет пробой изоляции кабеля на поверхность какую-нибудь.

Изоляция может ухудшаться по следующим причинам:

  • старение изоляции в течении времени
  • увеличенная влажность
  • механические повреждения
  • воздействие агрессивной среды

Допустимые значения сопротивления изоляции

Величины сопротивления изоляции (Rx) кабелей различных типов должны быть выше допустимых значений. Допустимые значения определяются в ГОСТах, технических условиях, нормах и объемах испытания электрооборудования. Если брать нормы по испытанию сопротивления изоляции силовых кабельных линий, то тут всё просто:

  • испытываются мегаомметром на 2500В на протяжении 1 минуты
  • значение Rх должно быть больше 0,5 МОм для кабелей до 1кВ включительно
  • для кабелей напряжением выше 1кВ значение сопротивления изоляции не нормируется, а факторами, определяющими пригодность является величина тока утечки при высоковольтных испытаниях и отсутствие пробоев

Порядок проверки сопротивления изоляции кабеля мегаомметром

Приходишь на объект, и видишь например следующую картину.

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Перед непосредственно проверкой сопротивления изоляции надо убедиться, что:

  • жилы кабеля прозвонены и промаркированы (о прозвонке читайте тут)
  • на жилах кабеля, куда будем подавать напряжение нет грязи, нагори, краски (на жиле кабеля такого нет, но это может быть на заземлении, которое окрашивают или же оно может быть покрыто слоем ржавчины, тогда надо отскрести отверткой или ножом)
  • на другом конце кабеля никто не работает и кабель отсоединен от нагрузки и источника питания (не стоит подавать напряжение на монтажника, который может разделывать кабель с другой стороны, или замерять Rx кабеля с нагрузкой, также стоит проследить, чтобы мы не подали высокое напряжение на вторичные цепи и элементы, которые могут от 2500В прийти в негодность, поэтому иногда их просто мегерят на 500В)
  • кабель обесточен и предусмотрены меры, не допускающие случайную подачу напряжения на испытуемый кабель (замки, плакаты, выкачены ячейки)
  • если мегер-тест (измерение сопротивления изоляции) идет в комплексе с высоковольтными испытаниями, то нужно убедиться, что на втором конце кабеля (второй конец – противоположный от места испытания) выставлен человек или помещение заперто и огорожено с вывешенными плакатами
  • мегаомметр находится в исправном состоянии и годен к эксплуатации (клеймо поверки на корпусе и концы прибора испытаны)
  • вы имеете право и квалификацию работать с мегаомметром и производить данный вид работ (3 группа по электробезопасности и не просроченная проверка специальных знаний, плюс медосмотр)
  • провода мегаомметра должны иметь высокую изоляцию (тут можно еще сделать следующее: свести два провода мегаомметра и подать напряжение – значение должно быть нулевым, так как изоляции между проводами нет, а если развести – то бесконечность – так как сопротивление воздуха велико)

После того, как вышеприведенные пункты стали очевидно реализованы, можно приступать к делу. Помегерим!

Измерение сопротивления изоляции кабеля мегаомметром

Порядок действий следующий (!!!КАБЕЛЬ ОБЕСТОЧЕН!!!):

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

  1. Один конец мегаомметра на время проведения испытания подключен к заземлению (это может быть заземленная шина, заземляющий болт или переносное заземление)
  2. Если есть оболочка, экран, броня – их следует также заземлять на время измерения сопротивления изоляции и высоковольтного испытания
  3. На испытуемую жилу кабеля вешаем заземление (этим мы снимаем возможный остаточный заряд на кабеле)
  4. Вешаем на испытуемую жилу второй конец мегаомметра, по которому будет подаваться напряжение 2500В
  5. Снимаем с испытуемой жилы провод заземления
  6. Подаем прибором на испытуемую жилу напряжение 2500В в течение 60 секунд. Записываем значение сопротивления изоляции на 15-ой и 60-ой секундах испытания (в случае электронного прибора с памятью значения можно не записывать)
  7. На испытанную жилу кабеля вешаем заземление, для того, чтобы разрядить кабель. Чем длиннее кабель, тем дольше надо держать провод заземления на жиле.
  8. Снимаем второй конец мегаомметра с испытанной жилы, далее переходим на другую жилу кабеля и идем от пункта 2). Затем аналогично и для третьей жилы. В конце отключаем прибор от электроустановки

Если у нас трехжильных кабель, то мы должны получить значения сопротивлений изоляции фаза-ноль и фаза-фаза. Итого 6 измерений.

В реальности делают не три измерения, а одно – объединяют три жилы и подают напряжение от мегаомметра к ним. В случае, если значение сопротивления изоляции удовлетворяет, то всё хорошо.

В случае, если Rx неудовлетворительно, то производится измерение каждой жилы по-отдельности.

Фиксируют показания на 15 и 60-ой секундах для определения коэффициента абсорбции (Ka). Этот коэффициент численно равен отношению значений сопротивления R60/R15. Показывает степень увлажненности. Также существует понятие коэффициента поляризации или индекса поляризации (PI) – он равен отношению R600/R60 и характеризует степень старения изоляции. В нормах определены следующие значения:

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Предельное значение говорит о том, что кабель непригоден к эксплуатации. Индекс поляризации замеряется на кабелях с бумажной пропитанной изоляцией вместе с Ka. У кабелей с пластмассовой, ПВХ, изоляцией из сшитого полиэтилена индекс поляризации определять нет необходимости.

Сейчас существуют различные цифровые и электронные мегаомметры. В цифровых сразу можно увидеть после измерения значения коэффициента абсорбции, R60, R15, отдельные приборы позволяют измерять и PI. Кроме того у моделей sonel можно нажать кнопку старт, затем другой кнопкой ее зафиксировать и не держать минуту палец на кнопке. Работают приборы от аккумуляторов. Это упрощает жизнь.

В стрелочных приборах в основе источника постоянного напряжения (а испытания мегаомметром – это испытания постоянным напряжением) лежит или генератор, или кнопка (модели ЭСО).

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Тут уже придется либо крутить ручку прибора со скоростью 2 об/c, либо искать розетку. А кроме этого еще надо производить отсчет по секундомеру и записывать результаты. Трудности вызывают и шкалы отдельных приборов. Но мегаомметры различных производителей – это тема отдельной большой статьи.

В общем, не забывайте разряжать кабель после испытания, снимая накопившийся заряд заземлением. А уже затем снимайте конец прибора с испытуемой жилы. И чем длиннее кабель, тем больше времени держите заземление.

Сохраните в закладки или поделитесь с друзьями

Как подключается амперметр в цепь

Прозвонка кабеля мультиметром

Последние статьи

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Расчет тока трансформатора по мощности и напряжению

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Выпрямительные диоды: расшифровка, обозначение, ВАХ

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Применение линейки в ворде

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Где используется трансформаторное масло

Самое популярное

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Единицы измерения физвеличин

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Напряжение смещения нейтрали

Источник: https://pomegerim.ru/izmeritelnye-pribory/izmerenie-soprotivleniya-izolyacii-kabelya-megaommetrom.php

Как правильно пользоваться мегаомметром?

Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция.

Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно.

Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током.

Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор — мегаомметр. Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.

Принцип действия прибора

Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.

В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к.

замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ.

Читайте также:  Новая москва — место ссылки чиновников и будущая строительная площадка

Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми.

Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях.

При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.

Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:

  1. Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
  2. Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
  3. Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках. Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.Измерение сопротивления изоляции мегаомметром: пошаговая методика измеренияИзмерение сопротивления изоляции мегаомметром: пошаговая методика измерения
  4. Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
  5. Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
  6. Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений.
  7. В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.

По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой.

Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий.

Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.

Видеоуроки

Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:

Работа с моделью старого образца

Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:

Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:

Инструкция по эксплуатации цифровой модели

Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:

Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.

Будет интересно прочитать:

Источник: https://samelectrik.ru/kak-pravilno-polzovatsya-megaommetrom.html

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки.

Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб.

Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца.
    Измерение сопротивления изоляции мегаомметром: пошаговая методика измеренияАналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства.
    Измерение сопротивления изоляции мегаомметром: пошаговая методика измеренияЭлектронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Измерение сопротивления изоляции мегаомметром: пошаговая методика измеренияУпрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Измерение сопротивления изоляции мегаомметром: пошаговая методика измеренияСовременная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов.

Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло.

Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий.

Читайте также:  Установка подоконника своими силами — что может быть проще

Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека.

Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку.

Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток.

Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи.

Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2.

Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке.
    Измерение сопротивления изоляции мегаомметром: пошаговая методика измеренияПодключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подборка видео по теме

Источник: https://www.asutpp.ru/izmerenie-soprotivleniya-izolyatsii-megaommetrom.html

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки.

Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб.

Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Принцип действия мегаомметра

Работа мегаомметра основана на законе Ома для участка цепи, отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.

В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники.

Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь.

Надежный контакт обеспечивается зажимами – «крокодилами».

Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи.

Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы.

Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.

Что это такое

Мегаомметр является специальным измерительным прибором, используемым профессиональными электриками, для того чтобы вычислять электросети и электроприборы. Отличается от омметра работой с высоким напряжением.

Напряжение генерируется самостоятельным образом встроенным механическим генератором или батареей. Величина его равна 100-2500 вольт. Выпускается в двух вариантах — в виде индукторного и безындукторного аппарата.

Мегаомметр в помощь электрикам

Он является универсальным переносным электродвигательным устройством, который бывает как ручным, цифровым, аналоговым или электронным, так и механическим и высоковольтным.

Обратите внимание! Стоит указать, что первая модель была изобретена с ручкой. Сегодня самыми стильными являются электронные измерительные модели.

Полное понятие из области электродинамики

Устройство мегаомметра

Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов.

Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения.

Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.

Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка.

Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода.

Каждый выход имеет собственное обозначение: «З» — земля, «Л» — линия и «Э» — экран.

Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями.

Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».

Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.

Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.

Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.

Включение мультиметра в режим омметра и выбор пределов измерений

Управление мультиметром производится с помощью круглой поворотной ручки, вокруг которой расчерчена шкала, поделенная на секторы.

Друг от друга они отделены линиями или просто надписи на них отличаются цветом. Чтобы включить мультиметр в режим омметра надо повернуть ручку в зону сектора, обозначенного значком «Ω» (омега).

Цифры, которыми будет обозначаться режимы работы могут быть подписаны тремя способами:

  • Ω, kΩ – x1, x10, x100, MΩ. Обычно такие обозначения используются на аналоговых устройствах, у которых то, что показывает стрелка еще надо переводить в привычные значения. Если шкала проградуирована, к примеру, от 1 до 10, то при включении каждого из режимов отображаемый результат надо домножать на указанный коэффициент.
  • 200, 2000, 20k, 200k, 2000k. Такая запись применяется на электронных мультиметрах и показывает в каком диапазоне можно измерять сопротивление при установке переключателя в определенную позицию. Приставка «k» обозначает префикс «кило», что в единой системе измерений соответствует цифре 1000. Если выставить мультиметр на 200k и он покажет цифру 186 – это значит, что сопротивление равно 186000 Ом.
  • Ω – Если на корпусе омметра есть только такой значок, значит мультиметр способен автоматически определять диапазон. Циферблат такого устройства обычно может отображать не только цифры, но и буквы, к примеру, 15 kОм или 2 MОм.
Читайте также:  «Умные» зеркала со светодиодной подсветкой

У первых двух способов подписи шкалы есть прямая зависимость точности отображения результатов и их погрешности. Если сразу включить максимальный диапазон, то сопротивление порядка 100-200 Ом скорее всего будет показано неправильно.

Щупы прибора надо воткнуть в соответствующие гнезда – черный в «COM», а красный в то, возле которого среди других обозначений есть значок «Ω».

Опасность повышенного напряжения устройства

В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора.

Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы.

Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.

В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность.

Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.

Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией.

Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке.

Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.

Влияние наведенного напряжения

Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.

Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор.

Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой.

Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.

Пристальное внимание к наведенному напряжению объясняется реальной возможностью электрического травматизма. Поэтому все работники должны строго соблюдать установленные правила безопасности.

Действие остаточного напряжения

При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает разность потенциалов. Это приводит к образованию емкости, наделенной определенным зарядом.

После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд.

В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует использовать переносное заземление.

Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.

Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом.

С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами.

Во время каждого измерения следует использовать переносное заземление.

Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с контуром заземления. В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.

Безопасная эксплуатация мегаомметра

Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.

С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора.

В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку.

В противном случае устройство автоматически попадет в категорию неисправных.

Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции.

С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный.

Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.

Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов.

Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы.

По окончании замеров схема восстанавливается и приводится в рабочее состояние.

Где используется

Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр.

Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики.

Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.

Применение в условиях промышленности как основная сфера

Сопротивление изоляции: как правильно измерить

Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.

Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение.

В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер.

В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.

Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.

На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.

Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном.

Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме.

В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.

При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.

Видеоуроки

  • Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:
  • Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:
  • Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:
  • Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:

Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.

Будет интересно прочитать:

Источник: https://instanko.ru/izmereniya/kak-polzovatsya-megaommetrom.html

Ссылка на основную публикацию
Adblock
detector