Прикладная геодезия. Нивелировка — основа строительных работ

Введите ваш запрос для начала поиска.

Что такое нивелировка, расскажем о основных методах нивелирования в геодезии. Инструменты и основы геометрического и других принципов нивелирования.

Современное строительство похоже на масштабное производство какого – ни будь завода автогиганта, где существует масса отдельных производственных конвейеров, готовящих узлы будущего автомобиля.

Кто-то собирает двигатель, а другие специалисты, к примеру, управляют процессом автоматической сварки кузова.

Но и там и здесь четкое взаимодействие групп специалистов направлено на достижение конечного результата – производство технически сложного изделия, к примеру, машины, здания или сооружения.

От их слаженной подконтрольной работы зависит не только качественный результат, но и в первую очередь безопасность людей, которым впоследствии предстоит эксплуатация объекта.

Применительно конкретно к строительству это означает точность заранее выверенных точек, горизонтали и вертикальных плоскостей.

Да, профессия геодезиста высококвалифицированный труд, поскольку подразумевает владение точными, дорогими и технически сложными приборами, такими как электронный теодолит и т.д.

Но все же, для большинства строителей, хорошей практикой контроля качества работ, послужит регулярное применение более простого в обращении устройства, получившего название нивелир.

К примеру, разметить высоты на строительном участке, согласно плану, будет основной частью геодезических работ.

Изучив рельеф местности, строители получат необходимую информацию для оптимального выбора места под котлован и расчета точек сброса (вывода) сточных вод.

Прикладная геодезия. Нивелировка — основа строительных работ

Таким образом, основной задачей нивелирования можно назвать определение разницы точек будущего здания по отношению к земле по высоте. Получив данные о отметке цоколя здания, легко рассчитать точку вывода сточной воды или же привязать по месту врезку стока канализации.

Для осуществления контроля над ходом строительных работ, у мастера прораба, могут быть разные приборы локального значения, но они не дадут общей информации по всему объекту. Так, к примеру, для определения влажности строительных материалов существуют так называемые гигрометры. Но с его помощью невозможно определить степень критического увеличения всего здания.

С помощью нивелира реально точно снять значения высот по периметру здания и затем сравнить их с контрольными точками. На фасады здания по всему периметру устанавливаются специальные маркеры, затем высчитывают превышение между ними.

Таким образом, допустимым показателем можно считать нахождение всех маркеров в одной плоскости с учетом допустимых отклонений.

Если это так, значит, здание можно эксплуатировать дальше, в противном случае обнаруживается просадка и возможно потребуется эвакуация.

Нивелировка и ее методы

В целом все виды превышений можно сгруппировать на основные (преимущественные) и дополнительные. Основные подразумевают:

  • Использование горизонтального визира луча зрительной трубы нивелира (геометрическое нивелирование)
  • Принцип наклона визира луча зрительной трубки теодолита (тригонометрическое нивелирование)
  • Выравнивание жидкости в сообщающихся емкостях водяного уровня (гидростатическое нивелирование)

В качестве дополнительных методов нивелирования используют:

  • Барометрическое нивелирование, которое применяют в горах и основано на разнице показателей атмосферного давления по отметкам высоты
  • Автоматическое нивелирование, применяемое при производстве строительно-дорожных работ, принцип действия которых основан на считывание показаний с датчиков, установленных на автомобиле. Они в свою очередь высчитывают наклонный вектор при перемещении
  • Стереофотограмметрическое нивелирование выполняется на сложной аппаратуре в комплексе. Основано на паре снимков с космоса или самолета, которые потом частично перекрывают и загружают в цифровое устройство. Это самый догорай и современный метод, в результате которого выводится эффект трехмерного изображения

В качестве примера можно привести аэрофотосъемку современного микрорайона. Осуществив привязку четких контуров снятой местности к системе координат, можно получить трехмерную модель, с определением точек высот с использованием метода интерполяции.

Инструментарий геометрической нивелировки

Как было указано данный тип работ проводиться с помощью нивелира. Он представляет классический прибор с оптико-механической начинкой, обеспечивающий горизонт для визирного луча.

Прибор монтируется на штативе и выставляется в точку стояния, затем при помощи специальных винтов выводиться в горизонтальную плоскость. Трубка нивелира бывает двух видов, прямого и обратного изображения.

Трубкой прямого изображения оснащаются в основном нивелиры современного типа.

Приборы старого образца, хоть и имеют систему обратного изображения, но имеют отличную видимость.

К тому же при работе с трубками обратного изображения применяется измерительная линейка в перевернутом виде и система поворотных линз.

Стоимость таких приборов высока, да к тому же система линз для поворота изображения страдает одним недостатком. В условии рефракции наблюдаются незначительные искажения объектов, при использовании в жаркий период года.

И все же качество советских приборов цениться, по причине высокой четкости по сравнению с современными аналогами.

В качестве примера возьмем советский теодолит и сравним его с электронным геодезическим тахеометром имеющий оптическую систему Carl Zeiss .

Результат будет не в пользу последнего, так как советский хорошо подходит для локальной выверки с адекватным изображением. Если нужна глобальная картинка, необходимо использовать метод спутниковой геодезии.

Существует три типа конструкций нивелиров: цилиндрического уровня зрительной трубы, с компенсатором автоматом и электронные. Нивелиры так же принято делить по классу точности: технические (H -10), точные (Н-3, Н-3К, Н-3КЛ) и приборы высокой точности (Н-05, Н-1, Н-2).

Прикладная геодезия. Нивелировка — основа строительных работ

Как можно наблюдать все нивелиры имеют маркировку буквами, основная из которых Н. Она собственно означает слово нивелир. Цифры означают погрешность (среднеквадратическую) в миллиметрах, на  километр расстояния. Буквы Л и К означают лимб, а так же компенсатор, указывающие на конструктивную особенность нивелиров.

Компенсаторы предназначены для устранения погрешности при установке нивелиров, и бывают ручного и автоматического типа. То есть, вывод в горизонтальную плоскость при ручном компенсаторе выполняется непосредственно человеком, а при автоматическом соответственно самовыравниванием.

Принципиальные основы геометрического нивелирования

При работе с нивелиром существует ряд методов позволяющих эффективно добиваться точного результата:

  • Методом нивелирования из середины
  • Методом нивелирования вперед

В основе каждого из них лежит свой принцип работы. Так первый способ подразумевает отсчет показаний по геодезическим рейкам, которые устанавливаются в точках стояния, сзади и спереди нивелира.

Затем снимаются данные разницы превышения и записываются в журнал.

Способ расположения нивелира по отношению к рейкам получил название «метод нивелирования из середины», который является основным методом при строительстве.

Прикладная геодезия. Нивелировка — основа строительных работ

Данный метод основан на принципе отсчета, по аналогии с теодолитным ходом, ведущимся с заранее известных высот, называемых реперами. Принцип хорошо иллюстрирует картинка, где есть точки А и Б.

Естественно разница между точками по рекам составляет превышение, которое может быть как отрицательным, так и положительным.

Данные одного превышения на местности, на практике нельзя считать окончательным, поскольку для объективной картины ее рельефа, необходимо снять как можно больше таких превышений.

Система сравнивания высот, применяемая в топографических планах, носит название «Балтийская».

Она имеет начальную точку нуля Кронштадтского футштока, который в свою очередь находится на балтийском побережье.

В данном случае на картинке, абсолютная высота (точка Б) рассчитывается, как h = А + а – б. Точка А – это отметка государственной системы высот, а считывание с реек ведется по отрезкам а, б.

Нивелирование методом «вперед» основано на использовании прибора и одной рейки, устанавливаемой перед ним. Сам нивелир устанавливается на заранее известную точку, а формула, по которой рассчитывается превышение, имеет вид:

h = А + i – б, где i — высота нивелира, измеряемая рулеткой. Такой способ применяется реже, так как имеет сложности в установки прибора на вертикальной поверхности стен. К тому же работа дистанционным способом намного легче и позволяет не приближаться к объектам.

Прикладная геодезия. Нивелировка — основа строительных работ

Здесь за начальную точку отсчета, условно принято брать урез воды водоемов сообщающихся с любым мировым океаном.

Но в таком случае мы будем иметь дело с условной системой высот, точности которой будет не хватать для проведения масштабных строительных работ.

И все-таки, данный принцип геометрического нивелирования, отлично подойдет для локальных строительных площадок, где не требуется увязка высот здания с региональными системами.

Тригонометрическая нивелировка

Она построена на принципе использования одного из двух измерительных приборов, тахеометра или теодолита.

Для считывания превышения используют угол от горизонта до верхнего края измерительной рейки, а в случае большой удаленности объекта его вершины. К примеру, этим способом измеряют высоты опор линий электропередач.

Он хоть и дает незначительную погрешность расчета, но зато позволяет производить расчеты превышений на больших расстояниях и углах рельефа местности.

Прикладная геодезия. Нивелировка — основа строительных работ

Формула высоты тригонометрического измерения выглядит так: h = s * tg ν + i – б или h = S * sin ν + i – б. Значения величин подставляются в нее с учетом того, что:

  1. ν —  это угол луча по отношению к горизонту
  2. s — горизонт линии
  3. S — длина отрезка визирной линии
  4. i — высота измерительного прибора
  5. б — высота визировки

Принцип гидростатического нивелирования

Гироскопы (гидроуровня) хороши для использования в любых условиях, доступны по цене, а главное позволяют определять превышения в ускоренном автоматизированном режиме. Обычно их принято использовать:

  • при монтаже оборудования крупных габаритов
  • в отделочных и в архитектурных работах
  • для выверки горизонта фундамента
  • при укладке труб и монтаже сантехнических узлов
  • для выставления горизонтальных направляющих
  • для передач отметок высоты через преграды (перегородки, барьеры, водоемы)
  • для отслеживания просадок зданий и деформации сооружений

Работа гидроуровня демонстрируется рисунком ниже, и как было указано ранее, основана на выравнивании уровня воды (любой другой жидкости, к примеру, антифриз) в сообщающихся емкостях (сосудах). Здесь для нахождения превышения h, используют разницу в отметках, со специальных шкал, нанесенных на сосуды (отметки а, б).

Читайте также:  Печь для пиццы на участке: особенности и примеры

Принцип, положенный в основу этого измерения допускает считывание превышения в условиях малых пространств. Пользование приборами такого типа, не потребуют специальных знаний, но не даст точного результата. При измерении гидроуровнем погрешность может составлять до 1 см, как в минус, так и в плюс.

  Еще одним недостатком применения, можно считать неудобное перемещение прибора, а точнее его соединительного шланга.

Прикладная геодезия. Нивелировка — основа строительных работ

Принцип работы лазерных уровней

Современные электронные нивелиры построены на визуализации отметок проецируемых самим прибором с помощью лазера. При этом разметка может производиться лучом сразу в нескольких плоскостях предметов и помещений. В качестве примера рассмотрим работу ротационного уровня, скорость вращения луча которого, достигает 400 -550 об/мин.

Преимущество использования такого нивелира в том, что им можно производить разметку, высчитывать превышение в условиях закрытых узких пространств помещений и на открытой местности, с минимальной погрешностью и под любым углом. Работать можно, как при дневном освещении, так и в темное время суток. Его удобно использовать при поклейки плитки на стену, оклейки обоев и выставления иных конструкций. С его помощью выполняют:

  • нивелировку
  • превышение точек
  • размечать угол наклона конструкций

Лазерные уровни особенно незаменимы, там, где необходимо производить разметку на больших и удаленных плоскостях, так как они более удобны в отличие от веревочных отвесов, угольников и реечных уровней. Они безопасны в применении и относятся к 2 классу излучения.

Сам луч прибора так же не представляет угрозы для человека, за исключением длительного воздействия на глаза. Все лазерные уровни ударопрочны и влагонепроницаемы, поскольку такие факторы влияют на работу и защита от них изначально заложена в разработку приборов.

Для большего удобства, при интенсивном солнечном свете, рекомендовано использовать специализированные очки.

Прикладная геодезия. Нивелировка — основа строительных работ

Все приборы необходимо подвергать проверке на точность периодично (раз в год). Желательно приобретать приборы известных марок и производителей. Использование непроверенного инструмента, может стоить вам больших ошибок, особенно при строительстве многоэтажных или многоярусных конструкций.

Ошибки в сантиметрах на начальных этапах строительства, могут привести к невозможности его завершения, по причине не соответствия размеров верхних помещений или консолей, типовым завершающим конструкциям (фермам, плитам перекрытий и т.д.).

Помните о том, что от кропотливой работы геодезистов, зависит весь ход строительного процесса, где задействовано множество ресурсов, как людских, так и машин (механизмов). А переделывать всю работу порой невозможно и дорого.

Нивелирование — определение отметок точек



Нивелирование — это процесс определения разности высотных отметок точек. Сущность нивелирования, или задача нивелирования, состоит в том, чтобы определить, насколько одна точка конструкции или местности выше или ниже другой.

Виды нивелирования в геодезии: геометрическое нивелирование, тригонометрическое нивелирование, гидростатическое нивелирование, барометрическое нивелирование, механическое нивелирование и спутниковое нивелирование.

Радиолокационное нивелирование, или аэронивелирование, когда отметки земли определяются с воздушного судна, рассматривать не будем из-за его пригодности только для целей мелкомасштабного картографирования.

Виды нивелирования

Спутниковое нивелирование выполняется на основе измерения высотных отметок точек геодезическими приёмниками ГЛОНАСС/GPS-систем и в строительной геодезии оно малоприменимо ввиду низкой точности получаемых отметок и сложностей с приёмом сигналов от спутников в городских условиях и, тем более, в условиях стройплощадки. Точность нивелировки в пределах 10-20 мм при использовании режимов статики и постобработки. Спутниковые геодезические определения чаще применяются при построении геодезических сетей для топосъемок и выполнения разбивочных работ.

Механическое нивелирование применялось в прошлом веке при помощи нивелир-автоматов на базе автомобилей и даже велосипедов, для решения некоторых прикладных задач из области инженерной геодезии при эксплуатации линейных сооружений — в основном, это работы по построению продольного профиля трассы на базе автомобиля и построение поперечных профилей насыпей или выемок на базе велосипедов. Точность нивелирования 0,3-0,6 метра на километр. Сейчас не применяется ввиду низкой точности и наличия более производительных способов производства работ по съемке поперечников.

Барометрическое нивелирование основывается на определении отметок путём измерения разности атмосферного давления в этих точках.

Для целей прикладной геодезии в строительстве не подходит из-за низкой точности в пределах 0,3-0,5 метра в самых идеальных условиях производства геодезических измерений и при использовании самого точного геодезического оборудования, в частности, барометров-высотомеров. Раньше барометрическое нивелирование применялось для получения отметок горных вершин.

Гидростатическое нивелирование, основанное на свойстве жидкости занимать один и тот же уровень в сообщающихся сосудах, в геодезическом сопровождении строительства и при выполнении геодезических работ по мониторингу осадки зданий (при наблюдении за деформациями зданий) широко применяется и в настоящее время, поскольку его точность составляет 0,1-1,0 мм. Следует сказать, что область применения способа гидростатического нивелирования ограничена длиной соединительных трубок между двумя измерительными приборами, что затрудняет передачу отметок на большие расстояния.

Тригонометрическое нивелирование, сущность которого в измерении превышения наклонным визирным лучом на основе измерения угла наклона и расстояния, широко применяется в строительной геодезии при нивелировании по квадратам для построения картограммы земляных работ и планов земляных масс.

Кроме того, при услугах практически любой топосъемки участка электронным тахеометром или теодолитом, тригонометрическое нивелирование присутствует по умолчанию. Точность такого нивелирования — до 3 мм относительно каждой станции тахеометрической съемки (для электронного прибора, конечно же).

Периодическая нивелировка путей крана также может выполняться электронным тахеометром с высокой точностью высотных отметок.

Геометрическое нивелирование

Геометрическое нивелирование, самое распространённое в инженерной геодезии, выполняется простыми по конструкции нивелирами (техническое нивелирование, нивелирование 3 класса и нивелирование 4 класса) и нивелирами с плоско-параллельной пластиной (нивелировка 2 и 1 классов точности). Виды инженерных изысканий по геометрическому нивелированию основаны на определении превышений относительно горизонтального визирного луча, задаваемого цифровым или оптическим нивелиром. Точность нивелирования при этом составляет от 5 до 0,1 мм, в зависимости от класса нивелира. Для каждого класса измерений (класса нивелирования) Инструкция по нивелированию определяет методику производства работ, состав и тип геодезического оборудования. Делается нивелирование от геодезических пунктов Государственных нивелирных сетей и реперных систем при выполнении работ на железнодорожных путях.

Геодезические работы по нивелированию

Способы нивелирования (методы нивелирования), а их два — «нивелирование из середины» и «нивелирование вперёд», выбираются исходя из местных условий для производства геодезических работ.

Первый способ, «из середины», является наиболее предпочтительным, поскольку позволяет компенсировать систематические ошибки нивелирования, если нивелир не достаточно хорошо выверен. Схема нивелирования выбирается исходя из поставленной задачи и расположения пунктов геодезической сети.

Обработка журнала нивелирования сводится к постраничному и посекционному контролю, проверке невязок на соответствие допускам, уравниванию ходов и вычислению отметок точек. Это, так сказать, основы нивелирования, которые должен знать каждый геодезист.

Техническое нивелирование, а также нивелирование 3 и 4 классов, покрывают собой практически весь спектр задач прикладной геодезии в строительстве.

Это и нивелирование поверхности по квадратам, и нивелировка пола (нивелировка перекрытий), и передача отметок на дно котлована и на монтажные горизонты.

Это и измерение крена зданий и сооружений, и высотные съемки местности (нивелировка поверхностей после выполнения благоустройства), и проверка уклонов поверхности и уложенных труб, и масса других задач.

© Геодезическая фирма «Скорая геодезическая помощь», Москва, Российская Федерация.

Цены на нивелирование, стоимость нивелировки за 1 км хода

Категория сложности I II III
Уклоны местности до 2 % 2-3 % более 3 %
Тип населенного пункта поселок город мегаполис
Техническое нивелирование от 2 330 рублей от 3 620 рублей от 6 290 рублей
Нивелирование 4 класса от 3 110 рублей от 5 260 рублей от 8 630 рублей
Нивелирование 3 класса от 7 950 рублей от 9 300 рублей от 11 500 рублей
Нивелирование 2 класса от 16 240 рублей от 18 060 рублей от 21 700 рублей
Нивелирование 1 класса от 27 700 рублей от 32 200 рублей от 43 600 рублей

Заказать нивелирование: +7 (926) 926-03-03.

Заказать геодезические работы по нивелированию и уточнить расценки на классы нивелирования можно через пункт меню «Есть вопрос?», который расположен вверху с левой стороны, или по телефонам (9:00-21:00 по Москве): +7 (926) 926-03-03 («Мегафон») и +7 (962) 962-03-03 («Билайн»), позвонив в нашу топографо-геодезическую фирму.

Геодезическое нивелирование

В ходе современного строительства специалисты руководствуются различными методами и применяют точные геодезические приборы. От их слаженной работы зависит конечный результат на площадке. Подходящую роль играет устройство, которое называют нивелиром. С его помощью проводятся основные подготовительные работы на любом строительном объекте.

Принцип действия прибора достаточно прост. Геодезисты выверяют точки высот на окружающей местности и составляют точный план, по которому будут дальше работать строители. Это необходимо для определения наиболее точного места расположения котлована будущего объекта строительства, а также при расчете точек вывода сточных вод.

Рисунок 1. Определение и значение нивелирования. Автор24 — интернет-биржа студенческих работ

Методы нивелирования

Геодезическое нивелирование имеет основную задачу. Она заключается в определении разницы точек здания, которое необходимо возвести, по отношению к нулевому уровню.

Эти точные данные о нулевой отметке позволяют рассчитать точные данные в первом этапе строительства.

В частности, специалисты определяют расположения точек выводы сточных вод, отметку цокольного этажа и другие важные инженерные данные.

Замечание 1

При проведении процесса нивелирования специалисты, работающие на строительном объекте, могут пользоваться различными измерительными приборами, однако не все они способны предоставить полные необходимые данные о строительной площадке и местности, окружающей ее.

Прорабы на стройке используют приборы локального значения. Например, гигрометры способны определить влажность используемых на строительном объекте материалов, однако с их помощью нельзя понять критических значений увеличения здания.

Читайте также:  Nature House — дом под геодезическим куполом в Арктике

Нивелир используется для более практичных задач. Специалисты с его помощью снимают точные значения высот по периметру будущего здания и сопоставляют данные с промежуточными контрольными значениями.

Это процесс проводится в несколько основных этапов:

  • по периметру здания на фасадной части наносятся специальные маркерные отметки;
  • рассчитываются различия между этими точками.

В результате, все точки должны совпадать с контрольными отметками в пределах допустимой погрешности. Нивелирование может применяться в уже построенных зданиях.

Таким образом, специалисты смотрят на степень отклонения основных показателей на фасаде здания и после просчета результата составляют экспертное заключение о возможности дальнейшей эксплуатации действующего сооружения.

Если итоговые данные превышают максимально допустимые значения, то принимается решение об эвакуации людей из здания и признания его аварийным.

Все виды превышений подразделяются на основные и дополнительные виды. Основные виды подразумевают под собой:

  • геометрическое нивелирование;
  • тригонометрическое нивелирование;
  • гидростатическое нивелирование.

Дополнительные методы нивелирование разделяются на:

  • автоматическое нивелирование;
  • барометрическое нивелирование;
  • стереофотограмметрическое нивелирование.

При использовании геометрического нивелирования применяется горизонтальный визир луча у зрительной трубы нивелира. В тригонометрическом методе нивелирования используется принцип наклона визира луча зрительной трубки. При гидростатическом методе происходит процесс выравнивания жидкости в двух емкостях.

При использовании дополнительных методов нивелирования происходит более длительная обработка данных. В горной местности обычно имеет смысл сопоставлять разницу показателей атмосферного давления по отметкам определенных высот. В этом состоит барометрический метод измерения.

В условиях проведения работ при строительстве дорожных объектов используется автоматическое нивелирование. Оно представляет собой принятие принципа действия считывания показаний датчиков, которые установлены на специальной автомобильной технике. В процессе перемещения автомобиля производится обработка необходимых данных и составляется «портрет» окружающей местности.

Еще один метод нивелирования производится с использованием сложной вычислительной техники, которая работает как единый комплекс. Сначала делают ряд фотоснимков из космического пространства. Затем эти материалы перерабатывают в цифровой вид.

После обработки изображений составляется трехмерная модель местности или объекта. Таким образом, можно составить трехмерный план местности целого города или микрорайона, а затем привязать получившиеся данные к системе координат с определением точек высот.

В этом состоит стереофотограмметрическое нивелирование.

Приборы нивелирования

Геометрическое нивелирование проводится в основном при помощи одного главного инструмента – нивелира. У этого классического точного прибора мощное оптико-механическое внутреннее содержание. Оно в полной мере обеспечивает горизонт, необходимый для визирного луча. Сам прибор удерживается на специальном штативе.

Нивелир выставляют в определенную точку, откуда будут произведены необходимые замеры. Прибор состоит из трубки, которые бывают двух типов. В них формируются прямые и обратные изображения.

В современных приборах обычно используется труба прямого изображения. В более старых образцах можно увидеть трубку обратного изображения.

Они отличаются очень хорошим качеством картинки и также используются специалистами.

Нивелиры по типу конструкции делятся на электронные устройства, приборы с компенсатором и на приборы с цилиндрическим уровнем зрительной трубы.

Основы геометрического нивелирования

В работе с нивелиром применяют ряд специальных методов, которые позволяют добиваться наиболее точных результатов измерений. Специалисты используют метод нивелирования из середины и метод нивелирования вперед.

Согласно первому методу работы нивелира, отсчет показаний производится по геодезическим рейкам. Они устанавливаются в определенных точках стояния. Обычно это положение спереди и сзади самого прибора. Данные, которые были получены нивелиром, записывают в журнал измерений.

Этот метод стал основным при проведении строительных работ.

Второй метод предполагает брать за основу урез воды любого водоема и сопоставлять с уровнем мирового океана. В этом случае геодезист имеет дело с условной системой высот.

Ее точности не хватает, чтобы провести полномасштабные измерения на строительном объекте, однако он практически идеально подходит для локальных измерений, где не требуется жесткая привязка высот здания с другими региональными системами.

Тригонометрическая нивелировка

Рисунок 2. Тригонометрическое нивелирование. Автор24 — интернет-биржа студенческих работ

Тригонометрическая нивелировка строится на принципе использования в работе теодолита и тахеометра. Эти точные измерительные приборы считывают превышение угла от горизонта до верхнего края используемой рейки.

Подобный способ измерения часто используют при выявлении высот опор линий электропередач и других подобных высоких нестандартных объектов.

Такой способ нивелировки позволяет производить максимально точные расчеты превышений, где есть большие расстояния между объектами и присутствуют углы рельефа местности.

Для тригонометрической нивелировки используют ряд значений величин, с помощью которых составляются формулы высоты измерения. При определении результата вычислений используется угол луча по отношению к горизонту, высота измерительного прибора, длина отрезка визирной линии и горизонт линии.

Нивелирование, виды и способы, методы и классы

Нивелирование – это измерения по определению превышений между точками на земной поверхности и вычисление их высот относительно начальной высотной точки отсчета с применением различных геометрических, физических методов и приборов.

Самые первые упоминания об уровневых построениях были известны еще в Древнем Риме и Греции. Связаны они с водяным уровнем, то есть с первым гидростатическим способом нивелирования. Все последующие методы получали с развитием технического прогресса, конкретными изобретениями и их практическим применением.

Изобретения зрительной трубы и сетки нитей (Пикар) в XVI и XVII веке, барометра в XVII (Торричелли), цилиндрического уровня в XVIII (Рамсден) позволили развивать способы барометрического, геометрического и тригонометрического нивелирования. Построение стереокомпаратора и стереофотоаппарата создало предпосылки для стереофотограмметрического нивелирования.

На основе физических принципов лазерных излучений и новых цифровых технологий появляются современные лазерные и цифровые нивелиры.

Ставить в уровень вот что означает с французского нивелир. Именно благодаря прибору с таким наименованием получили распространение геодезические способы точного нивелирования. Наиболее точным, популярным и востребованным в современном приборостроении, строительстве, геологической разведке и других отраслях считается способ геометрического нивелирования.

Методы построения и классы высотных нивелирных сетей

Можно рассматривать в ракурсе распространения единой и однозначной высотной системы координат по всей территории страны. Она имеет название Балтийская.

Известно, что за ее начальную точку отсчета принят уровень Кронштадтского футштока. Все построения происходят «от общего к частному» и соединения нивелирных ходов между собой представляют высотные сети.

По точности результатов измерений они подразделяются на пять типов нивелирования:

  • I-го класса;
  • II-го класса;
  • III-го класса;
  • IV-го класса;
  • технического нивелирования.

Сети I и II класса создаются как основа всей высотной системы страны. С их помощью решаются крупные научные задачи по отслеживанию вертикальных перемещений физической поверхности Земли, исследований земной поверхности, измерения уровней всех морей окружающих нашу страну.

Сети III, IV класса развиваются от пунктов более высоких классов и выступают высотной основой для топосъемок, изыскательских и прикладных геодезических работ. Ориентировочная схема по развитию нивелирных сетей показана на рис.1.

Рис.1. Схема высотных сетей.

Сети I класса формируются из нивелирных ходов, полигонов с общей протяженностью порядка 1200 км в освоенных районах страны и 2000 км в малоосвоенных. При построении полигонов II класса их периметры составляют 400 и 1000 км соответственно.

Они выстраиваются внутри полигонов I класса системой линий и ходов. Периодически в сетях I и II класса производятся повторные измерения через 25 и 35 лет соответственно. Это дает возможность поддерживать их на соответствующем современном уровне.

 Построение сетей III, IV класса опирается на пункты государственного высотного обоснования высших классов и осуществляется внутри этих полигонов. При создании высотной съемочной основы для топосъемок возможно прокладывание сетей с применением технического нивелирования.  

Каждый класс нивелирования исполняется с наилучшей точностью с соблюдением соответствующих требований по допустимым значениям среднеквадратических погрешностей нивелировок и предельных погрешностей в полигонах и отдельных линиях ходов. Параметры и формулы допустимых значений отображены таблице ниже, где L – длина линии хода, полигона в км.

Геодезическое обеспечение монтажных работ

Под геодезическим обеспечением монтажа строительных конструкций и технологического оборудования понимают процесс последовательного выполнения комплекса геодезических измерений на различных этапах изготовления, сборки и монтажа конструкций.

Установка или монтаж конструкций и технологического оборудования в проектное положение осуществляется относительно их монтажных осей, которые размечаются на конструкциях, или их расположение оговаривается в ППР и рабочих чертежах. Установка конструкций производится от строительных осей и от пунктов, их закрепляющих, в плане но высоте и но вертикали.

При монтаже конструкций и оборудования геодезическому контролю подлежат следующие основные конструктивные элементы и их взаимное расположение:

  • • положение верхних частей фундаментов, опорных плит, колец, анкерных болтов и др.;
  • • вертикальность опорных и несущих конструкций (колонн, мачт, пилонов);
  • • взаимное положение и осевые размеры между опорными поверхностями;
  • • прямолинейность, вертикальность или горизонтальность конструкций и направляющих (ездовых балок, рельсов кранов и лифтов);
  • • геометрические взаимосвязи осей технических устройств и приспособлений для обеспечения технологических требований (прямолинейность, соосность, параллельность, перпендикулярность);
  • • форма и размеры сечений криволинейных и объёмных конструкций сооружений (газгольдеров, нефтехранилищ, реакторов, котлов и др.).

Точность геодезических измерений при реализации монтажных работ устанавливается на основе допускаемых отклонений, предусмотренных рабочими чертежами, нормативно-технической документацией, регламентами и ир. Средняя квадратическая погрешность измерений в процессе геодезического контроля точности выполнения монтажных работ должна быть не более 0,1 -^0,2 величины допускаемых отклонений.

Читайте также:  Что ещё можно сделать из поддонов своими руками

Самыми общими требованиями к точности монтажа элементов конструкций и оборудования являются:

• Контроль установки планового положения осей анкерных устройств и железобетонных стаканов, осей металлических и железобетонных колонн, осей балок, ферм, ригелей, стеновых панелей и блоков. Эти работы выполняются со средней квадратической погрешностью 1-^2 мм.

  • • Контроль установки высотного положения опорных поверхностей металлических и железобетонных колонн, опорных площадок балок, ферм ригелей, опорных поверхностей стеновых панелей и блоков также производится с погрешностями не хуже 1^-2 мм.
  • • Контроль вертикальности осей металлических и железобетонных колонн высотой до 5 м выполняется с погрешностью 2 мм, высотой от 5 до 15 м – с погрешностью 3 мм, осей стеновых панелей и блоков – с погрешностью 1 мм.
  • • Непрямолинейность направляющих кранов и машин 1:5000+- 1:10000 в зависимости от длины составного рельса.
  • • Несоосность валов редуктора и двигателя 1:10000 их длины.
  • • 11еилоскостность и негоризонтальность монтажных столов 1:10 000 их длины.

При установке конструкций и оборудования на фундаменты сначала выверяют их плановое положение, а затем высотное. Соосное размещение агрегатов производится при помощи системы горизонтально и вертикально расположенных домкратов.

Опыт показывает, что выполненная при монтаже оборудования юстировка сохраняется недолго, поэтому в процессе эксплуатации её нужно периодически повторять. Что касается строительных конструкций, то раз выверенное и закреплённое их пространственное положение (замоноличенное, заваренное) изменению не подлежит, разве что разрушению и повторному монтажу.

Геодезической основой выверки элементов конструкций и оборудования являются технологические оси, точки которых закрепляются на конструкциях определённым образом. Технологические оси могут совпадать с рабочими осями агрегатов или располагаться параллельно им.

Для установки в проектное положение осей конструкций и оборудования в процессе их строительства и монтажа, а также для контроля их стабильности в процессе эксплуатации строится планово-высотная геодезическая основа. Для разбивки элементов конструкций служит внутренняя разбивочная сеть сооружения, для производства монтажа оборудования строят специальную цеховую раз- бивочную сеть.

Точность построения сетей зависит от технических требований, предъявляемых к взаимному расположению монтируемых элементов. Практикой геодезического обеспечения монтажных работ выработан ряд требований к точности, плотности и взаимному расположению геодезических пунктов разбивочных сетей, основными из которых являются следующие:

  • • I [огрешности взаимного положения смежных пунктов сети должны быть согласованы с точностью сопряжения конструкций и оборудования.
  • • I [лотность пунктов должна быть достаточной для оперативного производства разбивочных работ и контрольно-монтажных измерений без дополнительных промежуточных построений.
  • • Местоположение пунктов сети должно обеспечивать их надёжную сохранность и доступность в процессе выполнения геодезических измерений.
  • • Погрешности взаимного положения смежных пунктов сети и в плане, и но высоте должны быть в 2 +- 3 раза меньше, чем погрешность выверки элементов оборудования.

Структура плановой геодезической основы, создаваемой для монтажа и эксплуатации оборудования, зависит от формы объекта, условий видимости, наличия геодезической техники и т. и.

В практике наибольшее распространение получили линейно-угловые и три- латерационные сети. Конструкция и форма сети обычно повторяет контуры сооружения или оборудования и представляет собой правильные геометрические фигуры – цепочки треугольников, квадратов и прямоугольников (см. рис. 7.6).

Стороны сети, как правило, параллельны осям оборудования, технологических линий, а пункты стремятся расположить так, чтобы они или закрепляли основные оси, или были близки основополагающим контурам и направляющим оборудования.

Поскольку вершины фигур геодезических монтажных сетей закрепляются на бетонных поверхностях цехов и перекрытий, то их длины для удобства производства линейных измерений стальными и инварными рулетками проектируют кратными 10-20 м.

Измерение длин сторон базисными приборами (проволоками) и инварными рулетками всего десять лет назад являлось логичным и оправданным, но сегодня эти методы могут оказаться несколько архаичными, поскольку длины линий и углы измеряются в основном электронными тахеометрами. Углы измеряют с погрешностями в несколько секунд, стороны – 1 – 2 мм.

В связи со слабой жёсткостью сетей трилатерации их строят, как правило, из линейных геодезических четырёхугольников (прямоугольниками или квадратами), центральных систем или их комбинацией в виде одинаковых симметричных фигур.

Такие сети обладают одинаковой точностью определения взаимного положения пунктов, что имеет значение для обеспечения равномерной точности монтажа на протяжённых технологических линиях.

Они выгодны и в организационном отношении, так как для линейных измерений в них используются одни и те же приборы.

При оценке проектов монтажных геодезических сетей определяют либо погрешность взаимного положения смежных пунктов (сторон) сети, либо функции уравненных сторон (углов, азимутов, координат). Погрешность функции определяется по известной формуле:

где ц- средняя квадратическая погрешность стороны с весом р= 1; /pF – обратный вес функции.

Вес измеряемой стороны назначается обратно пропорциональным квадрату средней квадратической погрешности её измерения. Формулы для расчёта точности и уравнивания типовых фигур трилатерации (центральных систем, цепочек треугольников и прямоугольников) приводятся в различных трудах и наставлениях [16, 17].

При строительстве высотных зданий на каждом монтажном горизонте (на каждом этаже) приходится многократно выполнять однотипные разбивки элементов конструкций сооружения. Это несущие конструкции (колонны, пилоны, стены), ограждающие конструкции, лестничные и другие проёмы, шахты лифта и др.

Разбивка этих конструкций производится с пунктов специальной разбивочной сети, которая называется внутренней разбивочной сетью здания. Эта сеть строится на исходном монтажном горизонте (на перекрытии подземной части сооружений) и повторяется на всех последующих монтажных горизонтах.

Для промышленных сооружений такая сеть строится для монтажа технологического оборудования.

Поскольку поперечное сечение зданий имеет небольшие размеры, то и стороны внутренней сети также не велики (несколько десятков метров), а это означает, что производство высокоточных угловых измерений в таких сетях достаточно затруднительно.

В связи с этим внутренние разбивочные сети высотных зданий строят методом микротрилатерации. Схемы сети трилатерации повторяют форму поперечного сечения здания и проектируются в виде типовых правильных геометрических фигур, как то: квадратов (рис. 9.1, а), прямоугольников (рис. 9.

1, б), центральных систем (рис. 9.1, в). Называют эти фигуры базисными.

Рис. 9.1. Сети микротрилатерации

Основной или базовой фигурой сети трилатерации является треугольник с измеренными сторонами а, Ь, с, см. рис. 9.2.

Рис. 9.2. Треугольник трилатерации

Длины сторон в фигурах трилатерации измеряются электронными тахеометрами и светодальномерами, а в сетях, создаваемых в качестве разбивочной основы, при строительстве зданий стороны измеряются компарированной рулеткой в 30 и 50 метров, что очень удобно на бетонной поверхности.

Угол а в треугольнике трилатерации (рис. 9.2) может быть вычислен через

тригонометрические функции tg— или cos а по формулам: 2

Для линейно протяжённых объектов сеть трилатерации создают из цепочки треугольников или четырёхугольников.

Оценка проекта сети трилатерации может быть выполнена как на компьютере при наличии соответствующей программы, так и при помощи приближённых формул для оценки точности типовых построений (см. раздел 2). В любом случае возникает необходимость в обозначении абсолютной ошибки измерения стороны сети.

Для сетей 4 класса относительная средняя квадратическая ошибка измерения стороны должна быть не более 1:100000. Следовательно, абсолютная ошибка для разных длин сторон будет различной.

В силу этого необходимо заранее определить рекомендуемый электронный тахеометр или компарированную рулетку, обеспечивающие эту точность на минимальных длинах проектируемых линий.

Высотная геодезическая основа промышленного объекта для обеспечения его строительства, монтажа оборудования и измерения осадок и деформаций в процессе его эксплуатации создаётся, как правило, из трёх контуров: опорного, каркасного и рабочего.

Первый контур базируется на глубинных реперах, второй включает в себя грунтовые и стенные реперы и марки, а третий контур – это рабочие реперы (анкерные болты, консольные шарики и т. и.

), закреплённые на стабильных конструкциях объекта или близких к нему сооружениях.

Глубинные реперы – чаще всего свайные или биметаллические – закладывают в коренные, стабильные породы, обеспечивающие надёжную и долговременную сохранность высоты. Простейшая конструкция глубинного репера приведена в разделе 10 «Геодезические наблюдения за деформациями сооружений».

Пункты каркасной нивелирной сети закрепляют грунтовыми или стенными реперами. Грунтовый репер – это железобетонный пилон, в верхнем торце которого закреплена металлическая марка со сферической головкой, а нижний торец располагается ниже глубины промерзания грунта на 0,5 м. Грунтовые и стенные реперы располагают на расстоянии 60 – 80 м за зоной возможных осадок строящегося объекта.

Класс высотных сетей определяется требованиями к точности высотных расположений конструкций и при монтаже прецизионного оборудования назначается точным инженерно-техническим нивелированием I и II классов, для обычного оборудования – это нивелирование III и IV классов.

Основными методами точного инженерно-технического нивелирования являются: геометрическое нивелирование, гидростатическое нивелирование и микронивелирование.

При геометрическом нивелировании погрешность определения разности высот двух точек, расположенных на расстоянии 10-20 метров, составляет 0,03 – 0,05 мм, а на расстояниях 300 – 500 м – 0,1 – 0,2 мм.

Такая высокая точность достигается использованием прецизионных оптических и цифровых нивелиров в комплекте с инварными рейками при тщательном эталонировании шкал микрометров, защите нивелиров от прямого попадания солнечных лучей и др.

Каркасная сеть обычно является основой для привязки рабочей сети к исходным реперам опорной сети.

Ссылка на основную публикацию
Adblock
detector