Использование энергии магнитного тока

Стихи о нас

Богатство Идей, Новизна, Оптимизм и Мудрость Рождению гениев пусть помогает трудность. Трудности эти уже превратились в смыслы.

Борьба,

Интерес, Наука, Ответственность, Мысли…

Тивикова С.К., зав. каф. начального образования НИРО

Партнёры

  • Использование энергии магнитного тока
  • Использование энергии магнитного тока
  • Использование энергии магнитного тока
  • Использование энергии магнитного тока
  • Использование энергии магнитного тока
  • Использование энергии магнитного тока
  • Использование энергии магнитного тока
  • Использование энергии магнитного тока
  • Использование энергии магнитного тока

Использование энергии магнитного тока

Способы получения и использования электрической энергии и энергии магнитного поля
Электрическая энергия – энергия движущихся по электрической цепи электронов (электрического тока). Электрическая энергия применяется для:

  • получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания;
  • для проведения электрохимических реакций;
  • получения тепловой энергии в электронагревательных устройствах и печах;
  • для непосредственной обработки материалов (электроэррозионная обработка).

Перечислим преимущества электрической энергии перед другими видами энергии:

  • Без электрической энергии невозможна нормальная жизнь современного общества.
  • Электрическая энергия является практически единственным видом энергии для искусственного освещения.
  • Электрическую энергию легко преобразовать в другие виды энергии (механическую, тепловую, световую, химическую и др.), и наоборот, в электрическую энергию легко преобразуются любые другие виды энергии
  • Электрическую энергию можно передавать практически на любые расстояния. Электрическую энергию удобно дробить на любые части в электрических цепях (мощность приемников электроэнергии может быть различна)
  • Процессы получения, передачи и потребления электроэнергии легко поддаются автоматизации, благодаря точности и чувствительности электрических методов контроля и управления.
  • Процессы, в которых используется электрическая энергия, допускают простое управление (нажатие кнопки, выключателя и т.д.) Использование электрической энергии позволяет повысить производительность труда во всех областях деятельности человека, автоматизировать почти все технологические процессы.

К недостаткам электрической энергии можно отнести невозможность запасать ее в больших количествах и сохранять эти запасы длительное время. Электрическая и магнитная энергии тесно взаимосвязаны друг с другом. Магнитная энергия – это энергия постоянных магнитов, обладающих большим запасом энергии, но плохо отдающих ее. Электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии. Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны. Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, например в теплоту.

Ток или поток? Магнитные цепи и их основные характеристики

Привет, Хабр! С недавнего времени я стал задумываться об актуальности статей и заметил, что на Хабре нет ни одной обзорной статьи про магнитные цепи. Как так!? Ведь это… а что это такое?

Действительно, наверняка даже самые отстраненные от инженерного дела люди имеют представление о том, что такое электрические цепи, но возможно, что про магнитные цепи не слышали вовсе. Каждый школьник когда-то в учебнике физики наблюдал разные схемы и формулы, описывающие законы Ома. Но магнитные цепи в рамки школьного курса не входят.

Я решил написать данную статью, чтобы показать, насколько удивителен мир физики и заинтересовать школьников в её изучении. В данной статье, однозначно, для полноты вещей будут и выводы формул и использование некоторых математических операций, которые могут быть известны не всем, но такие моменты я постараюсь сгладить. Приступим!

Что нужно вспомнить?

Для более четкого представления сей статьи, неплохо бы вспомнить основные характеристики самого магнитного поля: вектор магнитной индукции, вектор напряженности, поток вектора магнитной индукции – а также нужно вспомнить немного про магнитные вещества, а именно про ферромагнетики.

Использование энергии магнитного тока

Полагается, что вам известен обобщенный закон Ома и помнится, что такое ток, напряжение и сопротивление. Если нет, то крайне советую обратиться к сторонним ресурсам, чтобы иметь хотя бы общее представление о том, что последует далее. Крайне советую учебник И.Е. Иродова «Электромагнетизм».

Применение магнитных цепей

Магнитные цепи находят очень большое поле применения, а именно, они используются для надежного пропускания магнитного потока по специальному проводнику с минимальными или, в некоторых случаях, определенными потерями.

В электротехнической промышленности широко используется взаимная зависимость магнитной и электрической энергий, переход из одного состояния в другое.

На подобном принципе работают, например, трансформаторы, разные электродвигатели, генераторы и другие устройства.

Использование энергии магнитного тока

Конечно, можно продолжительное время говорить об устройствах, разных типах магнитопроводов (про которые речь пойдет далее), но наша первичная цель – рассмотреть выводы основных характеристик магнитных цепей. Продолжаем!

Как устроены магнитные цепи?

Магнитную цепь, на самом деле, не так сложно представить, как может показаться человеку, который о них впервые слышит.

Обычно магнитные цепи представляют из себя некоторые фигуры из ферромагнитного сердечника с источником или несколькими источниками ПОтока.

Пожалуй, один из самых простых примеров с одним источником, который можно взять на вооружение, проиллюстрирован ниже:

Использование энергии магнитного тока

Перед продолжением обусловимся, что среди электротехников сердечник называют магнитопроводом. Часть магнитопровода, на которой отсутствуют обмотки и которая служит для замыкания магнитной цепи, называется «ярмо».

Начнем с тороидального сердечника. Такой тороидальный сердечник может служить формой для катушки, как бы странно это не звучало. Но что за катушка? Ну, первое что приходит в голову – провод, образующий витки.

Хорошо, но какого его предназначение? Вернемся к электрическим цепям и вспомним, что существуют источники тока / напряжения, так называемые активные элементы.

Так вот, в магнитных цепях роль источника выполняют катушки с током, накрученные на основной элемент магнитной цепи – ферромагнитный магнитопровод.

Вспомним теперь про ферромагнитные материалы. Почему именно они? Дело в том, что благодаря высокому значению магнитной проницаемости, что сигнализирует о хорошей намагниченности ферромагнетика, силовые линии магнитного поля практически не выходят за пределы сердечника, либо не выходят вовсе.

Однако это будет справедливо лишь тогда, когда наш сердечник замкнутый, либо имеет небольшие зазоры.

То есть, ферромагнетики обладают сильно выраженными магнитными свойствами, когда как у парамагнетиков и диамагнетиков они значительно слабее, что можно наблюдать на следующем графике зависимости намагниченности от напряженности магнитного поля:

Использование энергии магнитного тока

Вещества, которые входят в конструкцию магнитопровода, могут обладать не только сильномагнитными свойствами, но также и слабомагнитными. Однако мы рассматриваем сердечник из ферромагнитного материала.

Ещё из школьного курса мы представляем себе картину с линиями магнитной индукции соленоида, мы можем визуально представить его поле и понимаем, что концентрация силовых линий, их насыщенность, наибольшая в центре рассматриваемого соленоида. Тут очень важно вспомнить правило буравчика, чтобы правильно указать направление силовых линий.

Использование энергии магнитного тока

Отсюда становится ясно, что катушки-источники порождают магнитное поле, а следовательно и поток линий магнитной индукции. Такие линии будут циркулировать по нашему сердечнику, словно повторяя его форму.

Именно поэтому нам важно условие замкнутости сердечника и материал, из которого он сделан. Положим, что наш воображаемый сердечник замкнут.

Из этого следует, что и силовые линии замкнуты, а следовательно выполняется теорема Гаусса для магнитного поля, которая гласит: поток линий магнитной индукции через замкнутую поверхность равен нулю. Стоит учесть, что поток адаптируется под площадь сечения.*

Использование энергии магнитного тока

Ну и в конечном счете ферромагнитный сердечник поток куда-то передает! Аналогичным образом замкнутый проводник позволяет передать электрический ток.

Отлично! Мы разобрались с тем, что такое магнитные цепи и даже вспомнили про теорему Гаусса и ферромагнетики. Теперь поговорим о том, какие следствия вытекают из теоремы Гаусса и возможности пренебрежения полем вне сердечника и в зазорах.

1] Магнитные потоки Ф1 и Ф2 через произвольные сечения будут равны между собой.

Использование энергии магнитного тока

2] В узле (разветвлении) сердечника алгебраическая сумма потоков (с учетом их направлений) будет равна нулю… Мне одному это что-то напоминает?

Использование энергии магнитного тока

То есть мы окончательно сформулировали, что замкнутая (или почти замкнутая) система из ферромагнитных сердечников может рассматриваться как проводящая цепь. В нашем случае – магнитная.

Расчет магнитных цепей

Теперь внимание. Мы можем провести прямую аналогию и рассматривать магнитный поток в цепи, как характеристику электрической цепи – силу тока.

Рассмотренное второе следствие означает, что для магнитной цепи, также как и для электрической, справедливо первое правило Кирхгофа.

Отсюда можно лаконично перейти к закону полного тока, который в рамках классического магнетизма будет выглядеть следующим образом (приготовьтесь, немного математики):

Криволинейный интеграл по замкнутому контуру от напряженности магнитного поля будет равен алгебраической сумме токов, сцепленных (окруженных) данным контуром.

Использование энергии магнитного тока

Также мы помним, что напряженность магнитного поля связана с магнитным потоком следующим образом:

Использование энергии магнитного тока

Руководствуясь приведенным законом полного тока и определением напряженности через магнитный поток, мы можем переписать закон полного тока относительно магнитного потока.

Откуда в уравнении появился и что символизирует аргумент l? Все просто. Так как мы рассматриваем контур L, то логично предположить, что на разных его участках наши показатели могут принимать разные значения: площадь сечения может изменяться, как и магнитная проницаемость или магнитный поток.

Полученное уравнение можно рассматривать как второй закон Кирхгофа, который, напомню, звучит следующим образом:

В любой момент времени алгебраическая сумма напряжений на ветвях контура равна нулю.

Для полной ясности, проведем аналогию между электрическими и магнитными цепями, а также их величинами.

Именно проведя аналогичное представление для электрической цепи, мы можем рассчитывать магнитные цепи. Для того, чтобы это сделать, следует:

  • Мысленно разбить сердечник на отдельные однородные участки (непрерывные, с постоянным сечением) без разветвлений и определить их магнитные сопротивления;
  • Построить эквивалентную электрическую цепь, последовательно заменяя участки магнитной цепи участками электрической с электрическими сопротивлениями, а также заменяя индуктивности (катушки) на источники ЭДС;
  • После обозначения заданных сопротивлений и ЭДС, можем вычислить в общем токи в элементах электрической цепи;
  • Произвести замену полученных величин согласно таблице (токи в потоки, ЭДС в МДС [Магнитодвижущую силу / Ампер-витки], а электрическое сопротивление в магнитное сопротивление).

Именно таким образом, мы можем рассчитать характеристики магнитной цепи. Полученные результаты позволяют, например, вычислить индуктивности.

А примеры расчетов будут?

Здесь – нет. А по ссылке – да! В данном документе Самарского государственного технического университета рассмотрены базовые примеры, которые позволят лучше разобраться в теме, если она вас заинтересовала. Помимо всего прочего, там же приведены теоретические справки. Советую прочитать в надежде, что вы сможете для себя что-то новое подчерпнуть.

Заключение

Электромагнитная индукция – причины возникновения, значение и способы применения явления

Время на чтение: 12 минут

При изменении тока в электрической цепи возникает магнитное поле. Причиной этого является электромагнитная индукция. Это явление широко применяется на практике. 

В статье рассказывается о том, что это такое, и каковы его основные закономерности.

Явление электромагнитной индукции

При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов. 

Использование энергии магнитного тока

Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

Использование энергии магнитного тока

Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей. 

Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.

Использование энергии магнитного тока

Опыты, выполненные этим учёным, выглядят следующим образом:

  1. Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.

  2. В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая – к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.

  3. Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

Использование энергии магнитного тока

  • При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.
  • Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

Объяснение явления

Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов. 

Использование энергии магнитного тока

Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения. 

Теория электромагнитного поля в физике была создана Максвеллом в 1861 году. Этому явлению присущи такие черты:

  • источником движения электронов является переменное магнитное поле;
  • его наличие можно обнаружить по производимому воздействию на электрические заряды;
  • это поле не является потенциальным;
  • силовые линии поля представляют собой замкнутые кривые.

Работа магнитного поля выражается в создании электродвижущей силы для электронов.

Закон электромагнитной индукции Фарадея

Основной характеристикой магнитного поля является магнитный поток. Зрительно его можно представить, как силовые линии, пронизывающие перпендикулярную плоскую фигуру, ограниченную замкнутой линией. Эти линии выражают вектор магнитной индукции.

Использование энергии магнитного тока

Произведение модуля этой величины на площадь для равномерного и однородного магнитного поля равно потоку поля через рассматриваемый контур.

При рассмотрении сложного поля, фигуру разбивают на небольшие участки, в которых поле равномерно и суммируют значения для каждого из них. Для вычисления в таких случаях используются методы дифференциального и интегрального исчисления.

Электромагнитная индукция измеряется в Тесла (Тл). Эта единица получила своё название в честь великого учёного-физика.

Закон Фарадея количественно описывает влияние магнитного поля на движение электронов. Он утверждает следующее: скорость изменения потока электромагнитного поля равна порождаемой им электродвижущей силе, воздействующей на электроны и создающей ток.

Нужно заметить, что когда магнитное поле порождается изменением силы тока, то возникающая электродвижущая сила воздействует на него противоположным образом. Это можно прояснить на таком примере. 

Если рассматривается провод, и в нём увеличивается сила тока, то это создаёт магнитное поле. Оно, в свою очередь, создаёт ЭДС, которая препятствует увеличению.

Правило Ленца

Это правило даёт возможность правильно определить направление индукционного тока в различных ситуациях. Оно формулируется следующим образом: направление тока, порождённого индукцией, создаёт такое изменение магнитного потока, препятствующее изменению внешнего поля, благодаря которому оно возникло.

Использование энергии магнитного тока

Это можно пояснить на следующем примере. Будет рассмотрена ситуация, когда внешнее магнитное поле со временем будет возрастать, а его силовые линии направлены вверх. 

Это произойдёт, например, в той ситуации, когда снизу к контуру, расположенному горизонтально, будут приближать магнит так, чтобы его северный полюс был обращён вверх. В этом случае магнитный поток будет увеличиваться, создавая электродвижущую силу.

В контуре будет создан индукционный ток. Он будет таким, чтобы магнитные силовые линии были противоположными по отношению к тем, которые характеризуют первоначальное. Теперь можно определить направление индукционного тока в контуре.

Как известно, если смотреть со стороны создаваемого поля, то он будет направлен по часовой стрелке. То есть, если смотреть сверху, направление будет против неё.

На этом примере можно увидеть, как с помощью правила Ленца можно определить направление магнитного поля и индукционного тока.

Самоиндукция

В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике. 

Использование энергии магнитного тока

Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка. 

В первой цепи после включения лампочка загорается сразу. Во второй, учитывая наличие индуктивного элемента, это происходит с заметным опозданием.

После размыкания свет в первой лампочке отключается практически мгновенно, а во второй это происходит замедленно. Важно отметить, что в процессе выключения индукционный ток может превысить первоначальный. Поскольку в этой ситуации он направлен также, как и рабочий, то сила тока может возрасти. В некоторых цепях это может вызвать перегорание лампочки.

Индуктивность

Проводник, через который проходит изменяющийся ток, способен накапливать энергию путём использования магнитного поля. У прямолинейного отрезка провода эта способность имеет незначительную величину. 

Однако, если речь идёт о катушке, то её величина гораздо сильнее. Эта характеристика называется индуктивностью. Она обозначается как «L» и играет важную роль при определении различных характеристик электромагнитного поля.

  1. Магнитный поток в определённом контуре можно выразить посредством формулы Ф = L* I, а электродвижущую силу в виде E = L* (dI/dt).
  2. Ток, проходящий через контур, способен создать электромагнитное поле, причём оно будет тем сильнее, чем быстрее будут происходить его изменения.
  3. На практике для увеличения индуктивности катушки используют вставленные внутрь стержни из ферромагнетика.

Энергия магнитного поля

Электрический ток создаёт магнитное поле. При этом он затрачивает определённую энергию. Её величина равна той работе, которая была затрачена на создание поля. Она вычисляется по следующей формуле:

Здесь использовались такие обозначения:

  • W – энергия магнитного поля;
  • L – индуктивность;
  • I – сила тока.

Если магнитное поле по какой-то причине пропадёт, то его энергия выделится в той или иной форме.

Применение электромагнитной индукции

Это явление активно применяется в различных сферах жизни человеческого общества. 

Далее будут приведены несколько наиболее известных примеров:

  • радиовещание невозможно без использования явления электромагнитной индукции;
  • в медицине магнитотерапия является одним из эффективных методов лечения;
  • при фундаментальных исследованиях для разгона элементарных частиц применяются синхрофазотроны, работа которых основана на явлении индуктивности;
  • счётчики электричества, применяемые в быту для его учёта, используют рассматриваемое явление;
  • для того, чтобы передавать произведённую электростанциями электрическую энергию на большие расстояния, применяются трансформаторы, работа которых построена на использовании электромагнитной индукции;
  • в металлургии для плавки металла применяются индукционные печи.

Использование этого явления очень широко распространено. Приведённые примеры являются только частью различных вариантов использования.

Все формулы по теме «Электромагнитная индукция»

Для того чтобы кратко освежить в памяти формулы, относящиеся к магнитной индукции, далее приводится перечень наиболее важных из них.

Открытие законов, которые описывают поведение электромагнитного поля, является одним из важнейших достижений науки за всю историю. В современной жизни использование этого явления происходит практически во всех областях жизни общества.

Электрическая энергия, ее свойства и применение

  • Содержание:
  • Электрическая энергия:
  • Из всех видов энергии в настоящее время наиболее широко применяется электромагнитная энергия, которую в практике обычно называют электрической.

Энергия — это количественная мера движения и взаимодействия всех форм материи. Для любого вида энергии можно назвать материальный объект, который является ее носителем.

Механическую энергию несут, например, вода, падающая на лопасти гидротурбины, заведенная пружина, тепловую — нагретый газ, пар, горячая вода.

Носителем электрической энергии является особая форма материи — электромагнитное поле, главная особенность которого состоит в том, что оно оказывает силовое воздействие на электрически заряженные частицы, зависящее от их скорости и величины заряда.

Это свойство электромагнитного поля является основой связанных между собой электрических и магнитных явлений, известных из курса физики — взаимодействия электрически заряженных или намагниченных тел, электрического тока, электромагнитной индукции и др.

Использованием этих явлений для получения, передачи и преобразования электрической энергии занимается электротехника. Применение электромагнитного поля и его энергии для передачи информации без проводов — задача радиотехники.

Применение электрической энергии

Широкое применение электрической энергии объясняется ее ценными свойствами, возможностью эффективного преобразования в другие виды энергии (механическую, тепловую, световую, химическую) с целью приведения в действие машин и механизмов, получения тепла и света, изменения химического состава вещества, производства и обработки материалов и т. д.

Преобразование электрической энергии в механическую с помощью электродвигателей позволяет наиболее удобно, технически совершенно и экономически выгодно приводить в движение многочисленные и разнообразные рабочие машины и механизмы (металлорежущие станки, прокатные станы; подъемно-транспортные машины, насосы, вентиляторы, швейные и обувные машины, молотилки, зерноочистительные, мукомольные машины и т. д.).

Электродвигатели приводят в движение поезда, морские и речные суда, городской транспорт.

С применением в промышленности электродвигателей стало возможным отказаться от неудобного и малоэффективного группового трансмиссионного привода, перевести рабочие машины на индивидуальный привод (у каждой рабочей машины — свой электродвигатель), а сложные машины (например, прокатный стан, бумагоделательная машина и т. п.) — на многодвигательный привод, когда каждый из группы электродвигателей выполняет в приводе свою определенную функцию.

Электрификация рабочих машин дает возможность не только механизировать, но и максимально автоматизировать силовые процессы, так как электродвигатель позволяет в широких диапазонах регулировать мощность и скорость привода.

Во многих технологических процессах используют преобразование электрической энергии в тепловую и химическую.

Так, например, электронагрев и электролиз дают возможность получать высококачественные специальные стали, цветные металлы, обеспечивают наивысшую чистоту производимых материалов.

При электротермической обработке металлов, резиновых изделий, пластмасс, стекла, древесины получают продукцию высокого качества.

Электрохимические процессы, составляющие основу гальванотехники, позволяют получать антикоррозионные покрытия, идеальные поверхности для отражения лучей и т. д.

Большое развитие, особенно в нашей стране, получила электросварка, обеспечивающая высокую производительность труда и другие технико-экономические показатели.

Электрические источники света обеспечивают высокое качество искусственного освещения. Благодаря применению электрической энергии получены выдающиеся результаты в технике связи, автоматике, электронике, в управлении и контроле технологических процессов и т. д.

В таких областях, как медицина, биология, астрономия, геология, математика и т. д.

, еще недавно применялись только электрические устройства общего назначения (электролампы, электронагреватели, электродвигатели и т. п.

), а теперь все шире внедряются специализированные электрические приборы, аппараты, установки, которые обеспечивают дальнейшее развитие этих областей как в научном, так и в прикладном отношении.

Большое значение для развития науки и техники имеют электронные вычислительные машины, которые становятся распространенным и высокоэффективным средством научных исследований, экономических расчетов, планирования, управления производственными процессами, диагностики болезней и т. д.

Получение электрической энергии

  1. Электрическую энергию можно получить из других видов энергии непосредственно или путем промежуточных преобразований.

  2. Для этого используют природные энергетические ресурсы — реки и водопады, океанские приливы, органическое топливо, ядерное топливо, солнечную радиацию, ветер, геотермальные источники.

  3. В больших количествах электрическую энергию получают на электростанциях с помощью электромеханических генераторов — преобразователей механической энергии в электрическую.

На гидроэлектростанциях механическая энергия к электрогенераторам поступает от гидротурбин, которые воспринимают постоянно возобновляемую в природе энергию течения рек. На тепловых электростанциях используют энергию органического топлива. Тепловая энергия, полученная при сжигании топлива, поступает в тепловые турбины (паровые, газовые), превращается в них в механическую и передается электрогенераторам.

На атомных электростанциях тепловую энергию получают за счет энергии, содержащейся в ядрах атомов, а в остальном схема получения электрической энергии такая же, как на тепловой станции.

Прямое преобразование химической, тепловой, лучистой энергии в электрическую осуществляют с помощью электрохимических, термоэлектрических, термоэмиссионных, фотоэлектрических генераторов. Эти устройства имеют малую мощность и поэтому для большой энергетики непригодны, а применяются в радиотехнике, автоматике, космической технике.

Для получения электроэнергии в больших количествах более перспективны магнитогидродинамические генераторы и устройства для прямого преобразования термоядерной энергии в электрическую.

Передача и распределение электрической энергии

Повсеместное использование электрической энергии при концентрации природных энергетических ресурсов в отдельных географических районах привело к необходимости передачи ее на большие расстояния, распределения между приемниками в большом диапазоне мощностей.

В Советском Союзе действуют электропередачи протяженностью более 1000 км (крупнейшая из них между Волжской ГЭС им. XXII съезда КПСС и Москвой). Решаются вопросы, связанные со строительством сверхдальних электропередач (3500—5000 км) из районов Сибири в европейскую часть страны.

Электрическая энергия легко распределяется по приемникам любой мощности. В технике связи, в автоматике и измерительной технике используют устройства малой мощности (единицы и доли ватта). Вместе с тем имеются электрические устройства (двигатели, нагревательные установки) мощностью в тысячи и десятки тысяч киловатт.

Для линий передачи и распределительных сетей применяют металлические провода (из алюминия, стали, меди). Действием электрогенератора в проводах и окружающем их диэлектрике устанавливается электромагнитное поле, несущее энергию.

При наличии проводов поле достигает высокой концентрации, поэтому передача осуществляется с высоким коэффициентом полезного действия и в количестве, достаточном для приведения в действие различных приемников, в том числе большой мощности.

В радиотехнике используется передача электромагнитного поля без соединительных проводов, поэтому поле, распространяясь в пространстве, рассеивается в большом объеме.

Приемные устройства улавливают лишь небольшую часть энергии, которой недостаточно для приведения в действие машин, нагревательных устройств, источников света и т. п.

Однако для передачи информации такой способ пригоден, так как для воспроизведения сигналов достаточно принять ничтожно малую часть энергии передатчика.

Электрификация народного хозяйства и ее значение

Ценные свойства электрической энергии были замечены еще тогда, когда наука и техника делали первые шаги с целью ее использования. Более 100 лет назад К. Маркс и Ф. Энгельс предсказали глубокое влияние электрификации на развитие человеческого общества.

Об этом неоднократно писал и говорил В. И. Ленин. Он видел не только технические и экономические возможности, но и исключительное социальное значение электрификации.

Указывая на необходимость электрификации, В. И. Ленин не ограничивал ее роль периодом восстановления народного хозяйства и построения фундамента социализма, а видел в ней материально-техническую базу коммунистического общества. «Если не перевести Россию на иную технику, более высокую, чем прежде, не может быть речи о восстановлении народного хозяйства и о коммунизме.

Коммунизм есть Советская власть плюс электрификация всей страны, ибо без электрификации поднять промышленность невозможно». В феврале 1920 г. приступила к работе созданная по инициативе В. И. Ленина Государственная комиссия по электрификации России (ГОЭЛРО). При постоянном внимании и поддержке В. И.

Ленина комиссия подготовила комплексный план восстановления и развития наиболее важных отраслей народного хозяйства на основе электрификации. В декабре того же года план был принят на VIII Всероссийском съезде Советов. Сравнительно с современным уровнем электрификации план ГОЭЛРО невелик—было намечено построить за 10 — 15 лет 30 электростанций общей мощностью 1,5 млн.

кВт при годовом производстве 8,8 млрд. кВт•ч электроэнергии. Но тогда, в годы разрухи и голода, и такой план многим казался нереальным. В; И. Ленин твердо верил в успех дела и, отмечая выдающееся хозяйственное и политическое значение плана, сказал о нем: «На мой взгляд, это — наша вторая программа партии». План ГОЭЛРО был выполнен за 10 лет, а к 1935 г.

мощность построенных электростанций превысила плановые наметки почти в 2,5 раза.

О дальнейшем развитии электроэнергетики можно судить по динамике производства электрической энергии (табл. В.1).

Годовая выработка электроэнергии стремительно росла и растет в основном за счет ввода в действие новых тепловых и гидравлических электростанций. При этом на первый план выступает тенденция увеличения единичной мощности электростанций и их энерго-агрегатов.

Таблица B.1

 Год 1913 1931 1940 1960 1965 1970 1975 1980
 Производство  электроэнергии,   млрд. кВт•ч 2,03 10,7 48,3 292,3 506,7 740,9 1038 1295

Потребности народного хозяйства в электрической энергии непрерывно растут, этим и обусловливается рост ее производства.

Для того чтобы удовлетворять эти потребности, необходимо строить не только новые электростанции, но и линии электропередачи, различные потребляющие энергию электроустановки, увеличивать производство трансформаторов, электродвигателей, коммутационной аппаратуры, электротехнических материалов, различной аппаратуры и приборов для автоматизации производственных процессов, электрификации быта и т. д.

В электрической системе (источник — линия— приемник) энергия не накапливается, т. е. одновременно с получением в генераторе она полностью преобразуется в другой вид в приемнике. Поэтому быстрый рост производства электроэнергии свидетельствует о таких же темпах электрификации в целом, включая ее передачу, распределение и использование.

В настоящее время во всем мире на производство электрической энергии используется около 1/3 всех добываемых энергоресурсов. Потребление электроэнергии растет в среднем вдвое быстрее, чем потребление энергетических ресурсов в целом. В 1960 г.

произведено 2000 млрд. кВт•ч электроэнергии, а в 1975 г. — 6500 млрд. По прогнозам специалистов также примерно втрое вырастет потребление электроэнергии за период с 1980 по 2000 г. и к началу следующего века достигнет колоссальной цифры — 30 000 млрд.

кВт•ч.

Еще более быстрыми темпами развивается электрификация в СССР, которая есть и будет основой непрерывного научно-технического и социального прогресса. Решается грандиозная задача — осуществление полной электрификации всей страны, создание материальной базы коммунистического общества.

Полная электрификация означает использование электрической энергии повсеместно: в промышленности, на транспорте, в сельском хозяйстве, в быту.

При этом особое внимание уделяется комплексной механизации и автоматизации производства с широким применением электронных вычислительных машин, электрификации тех участков и технологических процессов во всех отраслях народного хозяйства, в которых применение электрической энергии по тем или иным причинам было недостаточно.

Важнейшей задачей является рациональное использование электрической энергии, максимальное сокращение потерь в процессе ее потребления, производства, передачи и распределения.

Задача экономии ставится не только в отношении электрической энергии, а распространяется на все энергетические ресурсы. Она является частью общей большой работы по экономии и рациональному использованию всех видов материальных, трудовых и финансовых ресурсов.

В отчетном докладе XXVI съезду КПСС указано, что от выполнения этой работы, от умелого и эффективного использования всех имеющихся ресурсов зависит дальнейшее развитие экономики страны. Хозяйское отношение к общественному добру, умение полностью, целесообразно использовать все виды ресурсов съезд провозгласил одним из важнейших принципов экономической стратегии КПСС на предстоящий период.

Ориентировочные расчеты показывают, что запасов органического топлива по уровню потребления 2000 г. человечеству хватит примерно на 150 лет.

При том же уровне потребления лишь 10% электроэнергии могут дать все реки мира, еще меньше в настоящее время можно ожидать от использования морских приливов, энергии ветра.

Технически сильно ограничены возможности использования внутриземного тепла, энергии излучения Солнца. Таким образом, в ближайшем будущем основными источниками энергии будут органическое и ядерное топливо.

Планируемое ускорение строительства атомных электростанций вызывается не только необходимостью экономить органическое топливо, но и их решающими преимуществами в отношении загрязнения окружающей среды.

Для избавления человечества от угрозы «энергетического голода», устранения вредного воздействия на окружающую среду ученые ищут новые пути получения электрической энергии, увеличения мощности и коэффициента полезного действия установок для прямого преобразования тепловой, химической, солнечной энергии в электрическую.

В чем польза магнитной энергии? – энциклопедия википедии?

Генерируемая магнитная энергия может быть использована притягивать другие металлические детали (как в случае со многими современными машинами, имеющими движущиеся части) или могут использоваться для выработки электроэнергии и хранения энергии (гидроэлектростанции и батареи).

Для чего мы используем магнитную энергию? Магнитная энергия используется для перевести механическую энергию в электрическую. Они используются в электродвигателях и генераторах для преобразования механической энергии в электрическую и наоборот. Магниты также используются в медицине.

В чем разница между магнитной энергией и электрической энергией? Электричество обусловлено наличием и движением носителей заряда. В то время как магнетизм является результатом взаимодействие движущихся зарядов. Известно, что электричество является невидимой силой, а магнетизм рассматривается как результат электрического тока.

Здесь Что вызывает магнитную энергию? Магнетизм вызванный движением электрических зарядов. … В каждом атоме есть электроны, частицы, несущие электрические заряды. Вращаясь, как волчки, электроны вращаются вокруг ядра или ядра атома. Их движение генерирует электрический ток и заставляет каждый электрон действовать как микроскопический магнит.

Является ли магнитная энергия возобновляемой?

  • Как солнечные, ветряные и другие потенциальные источники Возобновляемая энергия, магнитная энергия также была отмечена как один из возможных кандидатов на замену ископаемых видов топлива, таких как природный газ, нефть и уголь, при производстве электроэнергии.
  • В чем разница между потенциальной магнитной энергией и потенциальной электрической энергией?
  • Электрическое поле на самом деле представляет собой силу на единицу заряда, воздействующую на неподвижный точечный заряд в любом заданном месте внутри поля, тогда как магнитное поле обнаруживается по силе, которую оно оказывает на другие магнитные частицы и движущиеся электрические заряды.

В чем разница между электростатикой и магнетизмом? Основная идея заключается в том, что электростатика — это изучение статических (неизменных) электрические поля, электрические заряды и правила их взаимодействия. Магнетизм – это изучение статических магнитных полей, магнитов и правил их взаимодействия.

Как магнитная энергия преобразуется в электричество? Магнитные поля можно использовать для получения электричества

Перемещение магнита вокруг катушки с проволокойили перемещение катушки с проволокой вокруг магнита, толкает электроны в проволоке и создает электрический ток. Генераторы электричества по существу преобразуют кинетическую энергию (энергию движения) в электрическую.

Какие примеры магнетизма?

Самый известный пример магнетизма – это стержневой магнит, который притягивается магнитным полем и может притягивать или отталкивать другие магниты. Древние люди использовали магниты, естественные магниты, сделанные из железного минерала магнетита.

Что является основным источником магнетизма? Источником магнетизма является электрические заряды. Движение электрического заряда вызывает магнетизм. Вещества состоят из крошечных атомов. Эти атомы имеют протоны, электроны и нейтроны.

Является ли магнетизм энергией?

Магнетизм не является ни энергией, ни силой. Магнетизм — это явление, подобное движению, электрическому току, гравитации, свету и т. д. Как явление магнетизм может быть описан энергией или силой. Как и многие другие физические величины.

Почему магнитная энергия не используется? Поскольку магниты не содержат энергии — но они могут помочь контролировать его… «Когда эти заряженные частицы проходят мимо магнитов внутри турбин, они создают вокруг себя поле, которое воздействует на другие заряженные частицы», — говорит Коэн-Тануги. …

Каковы недостатки магнитной энергии?

Электромагнитные источники питания может быть не таким полезным или может быть опасным в использовании, при определенных обстоятельствах. Поскольку генераторы используют электромагнитные поля для производства электричества, эти поля могут быть опасны для некоторых людей, использующих чувствительное медицинское оборудование, например, кардиостимуляторы. …

Сохраняют ли магниты энергию?

Как магниты хранят потенциальную энергию? Магнитная потенциальная энергия – это энергия, запасенная в система магнитов в результате действия магнитной силы друг на друга. Когда два магнита притягиваются или отталкиваются друг от друга, потенциальная энергия может храниться в их относительных положениях.

Чем отличается потенциальная энергия от потенциальной? Потенциальная энергия – это количество энергии it приобретает из-за этой разницы потенциалов. Потенциал – это способность объекта выполнять некоторую работу. … Потенциал — это работа, выполняемая на единицу чего-либо в этой системе, например, электрический потенциал — это просто работа, выполняемая на единицу заряда.

В чем разница между потенциальной энергией и напряжением? Электрический потенциал — это энергия на единицу заряда, полученная или потерянная при перемещении заряда из некоторой контрольной точки, в которой потенциал равен нулю. Напряжение – это разность потенциалов между двумя произвольные точки при котором потенциал не обязательно равен нулю.

В чем разница между pe electric и pe electric?

Электрическая потенциальная энергия в точке зависит от заряда, находящегося в этой точке, а электрический потенциал в любой точке не зависит от заряда в этот момент.

Какая связь между электричеством и магнетизмом? Электричество и магнетизм тесно связаны. Текущие электроны создают магнитное поле, а вращающиеся магниты вызывают протекание электрического тока.. Электромагнетизм представляет собой взаимодействие этих двух важных сил.

Может ли магнитное поле существовать без электрического поля?

Нет, у вас может быть магнитное поле без электрического поля.. Рассмотрим стержень с равным количеством положительных и отрицательных зарядов (таким, что они расположены на одинаковом расстоянии друг от друга). Пусть положительное движение движется влево со скоростью v, а отрицательное — вправо со скоростью v. Это приведет к магнитному полю, но не к электрическому полю.

В чем разница между гравитационной силой и магнитной силой? Ключевое различие между гравитационной силой и магнитной силой заключается в том, что гравитационная сила действует на все предметы, имеющие массу, тогда как магнитная сила действует на предметы, имеющие на себе железо или электрический заряд..

Бесконечна ли магнитная энергия?

Нет. Магниты имеют конечную энергию.

Может ли электричество существовать без магнетизма? Нет. Магнитное поле является результатом релятивистских эффектов, в частности лоренцевского сжатия, на электрические заряды, движущиеся друг относительно друга.

Ссылка на основную публикацию
Adblock
detector